OFDM的全称为Orthogonal Frequency Division Multiplexing,意为正交频分复用。OFDM通信技术是多载波传输技术的典型代表。OFDM是多载波传输方案的实现方式之一,利用快速傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和快速傅里...OFDM的全称为Orthogonal Frequency Division Multiplexing,意为正交频分复用。OFDM通信技术是多载波传输技术的典型代表。OFDM是多载波传输方案的实现方式之一,利用快速傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和快速傅里叶变换(FFT,FastFourier Transform)来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。本文介绍了OFDM通信技术基本原理和实现,分析了其优缺点,并对关键技术进行了分析。展开更多
电力电子设备在功率变换过程中,同时具备发送信息的能力。功率/数据双载波调制技术通过在功率控制环输出的基准上叠加信号载波,同时实现功率变换与信息发送功能。该方法采用独立的通信载波,不需要额外的通信控制器和耦合电路,具有信号...电力电子设备在功率变换过程中,同时具备发送信息的能力。功率/数据双载波调制技术通过在功率控制环输出的基准上叠加信号载波,同时实现功率变换与信息发送功能。该方法采用独立的通信载波,不需要额外的通信控制器和耦合电路,具有信号强度可调、传输距离远和实施成本低等优点。为提高通信速率,采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术进行信号调制。首先介绍了基于OFDM的功率/数据双载波调制的基本原理;然后对直流微网系统进行建模,分析了信道的传递函数,讨论了数据接收方案、通信帧的设计方法和峰均功率比(peak-to-average power ratio,PAPR)抑制问题,并选用了一种适用于功率/数据双载波调制的低峰均功率比设计方法;最后搭建了1个2kW的直流微网平台,应用所提技术在2台变换器间实现了9.6kb/s速率的通信,验证了该技术的可行性。展开更多
针对水声信道多途信号引起的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统符号间干扰的问题,提出了无源时间反转均衡的方法,将发送的探测信号时间反转与OFDM信号做卷积,利用无源时间反转镜的时间聚焦原...针对水声信道多途信号引起的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统符号间干扰的问题,提出了无源时间反转均衡的方法,将发送的探测信号时间反转与OFDM信号做卷积,利用无源时间反转镜的时间聚焦原理减小信道多途带来的符号间干扰,在OFDM符号中不使用导频的情况下实现信道均衡,简化了均衡步骤并提高了OFDM符号频带利用率。分析比较了无源时反均衡方法与最小平方信道均衡在水声多途信道下的误码性能。仿真研究和湖上实验表明,无源时反信道均衡算法可以有效的减小多途信道对OFDM水声通信系统带来的影响。展开更多
OFDM的全称为Orthogonal Frequency Division Multiplexing,意为正交频分复用。OFDM通信技术是多载波传输技术的典型代表。OFDM是多载波传输方案的实现方式之一,利用快速傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和快速傅里...OFDM的全称为Orthogonal Frequency Division Multiplexing,意为正交频分复用。OFDM通信技术是多载波传输技术的典型代表。OFDM是多载波传输方案的实现方式之一,利用快速傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和快速傅里叶变换(FFT,Fast Fourier Transform)来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。本文介绍了OFDM通信技术基本原理和实现,分析了其优缺点,并对关键技术进行了分析。展开更多
背景:通信技术的研究目标是实现各种业务信号高效率、高速率的可靠通信。OFDM(Orthogonal Frequency Division Multiplexing)技术因将整个信道带宽划分成若干个子信道,每一子信道用子载波调制时,允许相邻子载波之间有很大程度的重...背景:通信技术的研究目标是实现各种业务信号高效率、高速率的可靠通信。OFDM(Orthogonal Frequency Division Multiplexing)技术因将整个信道带宽划分成若干个子信道,每一子信道用子载波调制时,允许相邻子载波之间有很大程度的重叠,频谱利用率高。OFDM技术通过串并转换过程将高速传输的数据变为较低速率的传输,从而使传输信道具有平衰落特性,可有效地克服信道频率选择性的影响,减少ISI对系统性能的影响;OFDM实现调制与解调不同于传统的调制方式,而是通过FFT的正、逆变换实现的,系统实现的复杂度不高。展开更多
文摘OFDM的全称为Orthogonal Frequency Division Multiplexing,意为正交频分复用。OFDM通信技术是多载波传输技术的典型代表。OFDM是多载波传输方案的实现方式之一,利用快速傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和快速傅里叶变换(FFT,FastFourier Transform)来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。本文介绍了OFDM通信技术基本原理和实现,分析了其优缺点,并对关键技术进行了分析。
文摘电力电子设备在功率变换过程中,同时具备发送信息的能力。功率/数据双载波调制技术通过在功率控制环输出的基准上叠加信号载波,同时实现功率变换与信息发送功能。该方法采用独立的通信载波,不需要额外的通信控制器和耦合电路,具有信号强度可调、传输距离远和实施成本低等优点。为提高通信速率,采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术进行信号调制。首先介绍了基于OFDM的功率/数据双载波调制的基本原理;然后对直流微网系统进行建模,分析了信道的传递函数,讨论了数据接收方案、通信帧的设计方法和峰均功率比(peak-to-average power ratio,PAPR)抑制问题,并选用了一种适用于功率/数据双载波调制的低峰均功率比设计方法;最后搭建了1个2kW的直流微网平台,应用所提技术在2台变换器间实现了9.6kb/s速率的通信,验证了该技术的可行性。
文摘针对水声信道多途信号引起的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统符号间干扰的问题,提出了无源时间反转均衡的方法,将发送的探测信号时间反转与OFDM信号做卷积,利用无源时间反转镜的时间聚焦原理减小信道多途带来的符号间干扰,在OFDM符号中不使用导频的情况下实现信道均衡,简化了均衡步骤并提高了OFDM符号频带利用率。分析比较了无源时反均衡方法与最小平方信道均衡在水声多途信道下的误码性能。仿真研究和湖上实验表明,无源时反信道均衡算法可以有效的减小多途信道对OFDM水声通信系统带来的影响。
文摘OFDM的全称为Orthogonal Frequency Division Multiplexing,意为正交频分复用。OFDM通信技术是多载波传输技术的典型代表。OFDM是多载波传输方案的实现方式之一,利用快速傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和快速傅里叶变换(FFT,Fast Fourier Transform)来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。本文介绍了OFDM通信技术基本原理和实现,分析了其优缺点,并对关键技术进行了分析。
文摘背景:通信技术的研究目标是实现各种业务信号高效率、高速率的可靠通信。OFDM(Orthogonal Frequency Division Multiplexing)技术因将整个信道带宽划分成若干个子信道,每一子信道用子载波调制时,允许相邻子载波之间有很大程度的重叠,频谱利用率高。OFDM技术通过串并转换过程将高速传输的数据变为较低速率的传输,从而使传输信道具有平衰落特性,可有效地克服信道频率选择性的影响,减少ISI对系统性能的影响;OFDM实现调制与解调不同于传统的调制方式,而是通过FFT的正、逆变换实现的,系统实现的复杂度不高。