基于COMSOL数值仿真平台构建锂离子动力电池电化学-热耦合模型,深入研究了正极材料厚度,正、负极材料颗粒半径与电池内部极化间的作用规律,并在此基础上,归纳阐明了动力锂离子电池放电电压平台衰退、放电周期骤减与电池内部极化间的内...基于COMSOL数值仿真平台构建锂离子动力电池电化学-热耦合模型,深入研究了正极材料厚度,正、负极材料颗粒半径与电池内部极化间的作用规律,并在此基础上,归纳阐明了动力锂离子电池放电电压平台衰退、放电周期骤减与电池内部极化间的内在关联。结果表明:正、负极活化极化随正极厚度的增加变化差异较大,正极活化极化在18~31 m V之间波动,而负极可达到260 m V;放电末期负极固相浓差极化急剧增加,最大值达到425 mV。正极颗粒半径对极化的影响较小;负极颗粒半径减小为原来的一半,即0.5Rn时放电中期的负极活化过电势约为55 mV,较1Rn降低45%左右。负极活化极化的增加将导致电池放电电压平台下降,负极活化极化和固相浓差极化在放电末期急剧增加,是电压提前达到放电截止电压的最主要原因。展开更多
Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructur...Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructure of the as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and atomic force microscope (AFM). Results revealed that the nanoflowers (2-4 μm) were assembled by the ultrathin SnO2 nanosheets (3.1 nm esti- mated by AFM). When tested as anode material for lithium ion batteries, the SnO2 nanoflowers showed improved cy- cling stability comparing with the commercial SnO2 parti- cles. The reversible charge capacity of SnO2 nanoflowers maintained 350.7 mAh/g after 30 cycles, while that of the commercial SnO2 was only 112.2 mAh/g. The high re- versible capacity and good cycling stability could be ascri- bed to the hierarchical nanostructure, atomic thickness nanosheets and large surface area of the SnO2 nanoflowers.展开更多
文摘基于COMSOL数值仿真平台构建锂离子动力电池电化学-热耦合模型,深入研究了正极材料厚度,正、负极材料颗粒半径与电池内部极化间的作用规律,并在此基础上,归纳阐明了动力锂离子电池放电电压平台衰退、放电周期骤减与电池内部极化间的内在关联。结果表明:正、负极活化极化随正极厚度的增加变化差异较大,正极活化极化在18~31 m V之间波动,而负极可达到260 m V;放电末期负极固相浓差极化急剧增加,最大值达到425 mV。正极颗粒半径对极化的影响较小;负极颗粒半径减小为原来的一半,即0.5Rn时放电中期的负极活化过电势约为55 mV,较1Rn降低45%左右。负极活化极化的增加将导致电池放电电压平台下降,负极活化极化和固相浓差极化在放电末期急剧增加,是电压提前达到放电截止电压的最主要原因。
基金supported by the National Natural Science Foundation of China(21475085,21271125 and B010601)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,Program for Innovative Research Team in Science and Technology in University of Henan Province(2012TRTSTHN018)
文摘Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructure of the as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and atomic force microscope (AFM). Results revealed that the nanoflowers (2-4 μm) were assembled by the ultrathin SnO2 nanosheets (3.1 nm esti- mated by AFM). When tested as anode material for lithium ion batteries, the SnO2 nanoflowers showed improved cy- cling stability comparing with the commercial SnO2 parti- cles. The reversible charge capacity of SnO2 nanoflowers maintained 350.7 mAh/g after 30 cycles, while that of the commercial SnO2 was only 112.2 mAh/g. The high re- versible capacity and good cycling stability could be ascri- bed to the hierarchical nanostructure, atomic thickness nanosheets and large surface area of the SnO2 nanoflowers.