Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microsc...Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microscope(SEM),electrochemical performance tests were employed to investigate the effect of Mg doping on Li3V2(PO4)3/C samples.The results showed that a proper quantity of Mg doping was beneficial to the reduction of charge transfer resistance of Li3V2(PO4)3/C compound without changing the lattice structure,which led to larger charge/discharge capacity and better cycle performance especially at high current density.Li3Mg(2x)V(2-2x)(PO4)3/C sample with x=0.05 exhibited a better performance with initial charge/discharge capacity of146/128 mA·h/g and discharge capacity of 115 mA·h/g at 5C,while these two figures were 142/118 mA·h/g and 90 mA·h/g respectively for samples without Mg doping,indicating that a proper amount of doped Mg can improve the electrochemical performance of LVP sample.All of these proved that,as a trial Mg dopant,the synthesized MgNH4PO4/MgHPO4 compound exhibited well doping effect.展开更多
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted un...A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.展开更多
In this work, a density functional theory (DFT) based first-principles study is carried out to investigate tile potential of phosphorene-like SiS and SiSe monolayers as anode materials for sodium-ion (Na-ion) bat-...In this work, a density functional theory (DFT) based first-principles study is carried out to investigate tile potential of phosphorene-like SiS and SiSe monolayers as anode materials for sodium-ion (Na-ion) bat- teries. Results show that both SiS and SiSe have large adsorption energies towards single Na atom of 0.94 and -0.43 eV, owing to the charge transfers from Na to SiS or SiSe. In addition, it is found that the highest Na concentration for both SiS and SiSe is x = 1 with the chemical formulas of NaSiS and NaSiSe, corresponding to the high theoretical specific capacities for Na storages of 445.6 and 250.4 mAh g 1, respectively. Moreover, Na diffusions are very fast and show strong directional behaviors on SiS and SiSe monolayers, with the energy barriers of only 0.135 and 0.158 eV, lower than those of con- ventional anode materials for Na-ion batteries such as Na2Ti3O7 (0.19 eV) and Na3Sb (0.21 eV). Finally, although SiS and SiSe show semiconducting behaviors, they transform to metallic states after adsorbing Na atoms, indicating enhanced electrical conductivity during battery cycling. Given these advantages, it is expected that both SiS and SiSe monolayers are promising anode materials for Na-ion batteries, and in principle, other Na-based batteries as well.展开更多
基金Project(2014CB643405)supported by the National Basic Research Program of China
文摘Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microscope(SEM),electrochemical performance tests were employed to investigate the effect of Mg doping on Li3V2(PO4)3/C samples.The results showed that a proper quantity of Mg doping was beneficial to the reduction of charge transfer resistance of Li3V2(PO4)3/C compound without changing the lattice structure,which led to larger charge/discharge capacity and better cycle performance especially at high current density.Li3Mg(2x)V(2-2x)(PO4)3/C sample with x=0.05 exhibited a better performance with initial charge/discharge capacity of146/128 mA·h/g and discharge capacity of 115 mA·h/g at 5C,while these two figures were 142/118 mA·h/g and 90 mA·h/g respectively for samples without Mg doping,indicating that a proper amount of doped Mg can improve the electrochemical performance of LVP sample.All of these proved that,as a trial Mg dopant,the synthesized MgNH4PO4/MgHPO4 compound exhibited well doping effect.
基金Project(50302016) supported by the National Natural Science Foundation of China
文摘A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.
基金supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (16213414)
文摘In this work, a density functional theory (DFT) based first-principles study is carried out to investigate tile potential of phosphorene-like SiS and SiSe monolayers as anode materials for sodium-ion (Na-ion) bat- teries. Results show that both SiS and SiSe have large adsorption energies towards single Na atom of 0.94 and -0.43 eV, owing to the charge transfers from Na to SiS or SiSe. In addition, it is found that the highest Na concentration for both SiS and SiSe is x = 1 with the chemical formulas of NaSiS and NaSiSe, corresponding to the high theoretical specific capacities for Na storages of 445.6 and 250.4 mAh g 1, respectively. Moreover, Na diffusions are very fast and show strong directional behaviors on SiS and SiSe monolayers, with the energy barriers of only 0.135 and 0.158 eV, lower than those of con- ventional anode materials for Na-ion batteries such as Na2Ti3O7 (0.19 eV) and Na3Sb (0.21 eV). Finally, although SiS and SiSe show semiconducting behaviors, they transform to metallic states after adsorbing Na atoms, indicating enhanced electrical conductivity during battery cycling. Given these advantages, it is expected that both SiS and SiSe monolayers are promising anode materials for Na-ion batteries, and in principle, other Na-based batteries as well.