Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization...Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.展开更多
Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scann...Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scanning calorimetry (DSC),X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) were used toevaluate the structures and morphologies of samples. The results show that the calcination temperature has significant effect on thecrystallinity and morphologies. Pure LiNiVO4 flaky nanoparticles with a mean particle size around 20 nm can be readily prepared bycalcining the precursor in air at 500 °C for 2 h. As a cathode material for lithium-ion batteries, the porous LiNiVO4 powder exhibits agood structural reversibility.展开更多
Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinet...Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinetics of Br_(2)/Br-couple and serious self-discharge caused by bromine migration.Herein,lamella-like porous carbon nitride nanosheets(PCNS)with adsorption and spatial confinement effects are used to modify cathodes for Br-FBs.The large specific surface area and plentiful N-containing groups enable PCNS with excellent adsorption capacity,which captures bromine species into the pores on PCNS layers.The captured bromine species is subsequently confined in PCNS interlayers due to the strong interaction between bromine species and N-containing groups,thus effectively depressing bromine diffusion/migration.Moreover,the strong bromine adsorption capacity significantly improves the electrochemical activity of PCNS.Consequently,a zinc-bromine flow battery(ZBFB)employing PCNS-modified cathode achieves a high current density of 180 m A cm^(-2),with an ultra-high coulombic efficiency of 99.22%.It also exhibits better self-discharge performance and a long cycle life of 500 cycles.Furthermore,a complexing agent-free ZBFB is successfully realized based on the superior bromineentrapping/retaining capacity of the PCNS-modified cathode.Consequently,this work provides a promising strategy toward electrode modifications for high-performance and long-lifespan Br-FBs.展开更多
基金Project supported by Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, China Project (2010JK765) supported by the Education Department of Shaanxi Province, China
文摘Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.
文摘Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scanning calorimetry (DSC),X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) were used toevaluate the structures and morphologies of samples. The results show that the calcination temperature has significant effect on thecrystallinity and morphologies. Pure LiNiVO4 flaky nanoparticles with a mean particle size around 20 nm can be readily prepared bycalcining the precursor in air at 500 °C for 2 h. As a cathode material for lithium-ion batteries, the porous LiNiVO4 powder exhibits agood structural reversibility.
基金supported by CAS Strategic Leading Science&Technology Program(A)(XDA21070100)CAS Engineering Laboratory for Electrochemical Energy Storage(KFJ-PTXM-027)+1 种基金DICP funding(DICP I202026 DICP I201928)Liaoning Natural Science Foundation(2021-MS-024)。
文摘Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinetics of Br_(2)/Br-couple and serious self-discharge caused by bromine migration.Herein,lamella-like porous carbon nitride nanosheets(PCNS)with adsorption and spatial confinement effects are used to modify cathodes for Br-FBs.The large specific surface area and plentiful N-containing groups enable PCNS with excellent adsorption capacity,which captures bromine species into the pores on PCNS layers.The captured bromine species is subsequently confined in PCNS interlayers due to the strong interaction between bromine species and N-containing groups,thus effectively depressing bromine diffusion/migration.Moreover,the strong bromine adsorption capacity significantly improves the electrochemical activity of PCNS.Consequently,a zinc-bromine flow battery(ZBFB)employing PCNS-modified cathode achieves a high current density of 180 m A cm^(-2),with an ultra-high coulombic efficiency of 99.22%.It also exhibits better self-discharge performance and a long cycle life of 500 cycles.Furthermore,a complexing agent-free ZBFB is successfully realized based on the superior bromineentrapping/retaining capacity of the PCNS-modified cathode.Consequently,this work provides a promising strategy toward electrode modifications for high-performance and long-lifespan Br-FBs.