期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于正负样例的蛋白质功能预测 被引量:6
1
作者 傅广垣 余国先 +1 位作者 王峻 郭茂祖 《计算机研究与发展》 EI CSCD 北大核心 2016年第8期1753-1765,共13页
蛋白质功能预测是后基因组时代生物信息学的核心问题之一.蛋白质功能标记数据库通常仅提供蛋白质具有某个功能(正样例)的信息,极少提供蛋白质不具有某个功能(负样例)的信息.当前的蛋白质功能预测方法通常仅利用蛋白质正样例,极少关注量... 蛋白质功能预测是后基因组时代生物信息学的核心问题之一.蛋白质功能标记数据库通常仅提供蛋白质具有某个功能(正样例)的信息,极少提供蛋白质不具有某个功能(负样例)的信息.当前的蛋白质功能预测方法通常仅利用蛋白质正样例,极少关注量少但富含信息的蛋白质负样例.为此,提出一种基于正负样例的蛋白质功能预测方法(protein function prediction using positive and negative examples,ProPN).ProPN首先通过构造一个有向符号混合图描述已知的蛋白质与功能标记的正负关联信息、蛋白质之间的互作信息和功能标记间的关联关系,再通过符号混合图上的标签传播算法预测蛋白质功能.在酵母菌、老鼠和人类蛋白质数据集上的实验表明,ProPN不仅在预测已知部分功能标记蛋白质的负样例任务上优于现有算法,在预测功能标记完全未知蛋白质的功能任务上也获得了较其他相关方法更高的精度. 展开更多
关键词 蛋白质功能预测 正样例 符号混合图 标签传播
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部