期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用正则的方法在正样本和无标签样本上训练二分类器
被引量:
1
1
作者
李炳聪
《信息与电脑》
2019年第5期67-68,共2页
正样本-无标签样本学习(Positive-Unlabelled Learning,简称PU Learning)。相对于标准的正样本-负样本学习(Positive-NegativeLearning,简称PNLearning),其是一种仅使用少量正样本和大量无标签样本训练二类分类器的方法。以往工作通常...
正样本-无标签样本学习(Positive-Unlabelled Learning,简称PU Learning)。相对于标准的正样本-负样本学习(Positive-NegativeLearning,简称PNLearning),其是一种仅使用少量正样本和大量无标签样本训练二类分类器的方法。以往工作通常使用一种无偏估计的方法,使用正样本和无标签样本估计PNLearning损失,并建立深度神经网络模型。但是,这种估计方法依赖正样本的数量,当正样本数量较少时,学习算法会发生严重的过拟合。
展开更多
关键词
神经网络
正样本-无标签样本
二分类器
下载PDF
职称材料
题名
用正则的方法在正样本和无标签样本上训练二分类器
被引量:
1
1
作者
李炳聪
机构
广东工业大学
出处
《信息与电脑》
2019年第5期67-68,共2页
文摘
正样本-无标签样本学习(Positive-Unlabelled Learning,简称PU Learning)。相对于标准的正样本-负样本学习(Positive-NegativeLearning,简称PNLearning),其是一种仅使用少量正样本和大量无标签样本训练二类分类器的方法。以往工作通常使用一种无偏估计的方法,使用正样本和无标签样本估计PNLearning损失,并建立深度神经网络模型。但是,这种估计方法依赖正样本的数量,当正样本数量较少时,学习算法会发生严重的过拟合。
关键词
神经网络
正样本-无标签样本
二分类器
Keywords
neural network
positive
-
unlabeled sample
binary classifier
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用正则的方法在正样本和无标签样本上训练二分类器
李炳聪
《信息与电脑》
2019
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部