Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st...Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.展开更多
Induced polarization (IP) 3D tomography with the similar central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spa...Induced polarization (IP) 3D tomography with the similar central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spatial resolution and large probing depth. We discuss data acquisition and 3D IP imaging procedures using the central gradient array with variable electrode distances. A 3D geoelectric model was constructed and then numerically modeled. The data modeling results suggest that this method can capture the features of real geoelectric models. The method was applied to a polymetallic mine in Gansu Province. The results suggest that IP 3D tomography captures the distribution of resistivity and polarization of subsurface media, delineating the extension of abrupt interfaces, and identifies mineralization.展开更多
基金supported by National Natural Science Foundation of China(41504109,41404099)the Natural Science Foundation of Shandong Province(BS2015HZ008)the project of "Distinguished Professor of Jiangsu Province"
文摘Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
基金funded jointly by the National High Technology Research and Development Program(863 Program:No.2014AA06A610)special funds for basic scientific research business expenses of the Chinese Academy of Geological Sciences(No.YYWF201632)the National Major Scientific Instruments and Equipment Development Projects(No.2011YQ050060)
文摘Induced polarization (IP) 3D tomography with the similar central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spatial resolution and large probing depth. We discuss data acquisition and 3D IP imaging procedures using the central gradient array with variable electrode distances. A 3D geoelectric model was constructed and then numerically modeled. The data modeling results suggest that this method can capture the features of real geoelectric models. The method was applied to a polymetallic mine in Gansu Province. The results suggest that IP 3D tomography captures the distribution of resistivity and polarization of subsurface media, delineating the extension of abrupt interfaces, and identifies mineralization.