Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by ...Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay.Results The cell line bore a missense mutation in the 6th coding exon (c.676 C〉T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.展开更多
Objective: To research the contributions of p130Cas and PTEN signal molecules to the carcinogenesis of gastric carcinoma and the relationship between them. Methods: Detecting proteins of p130Cas, PTEN and PTEN mRNA ...Objective: To research the contributions of p130Cas and PTEN signal molecules to the carcinogenesis of gastric carcinoma and the relationship between them. Methods: Detecting proteins of p130Cas, PTEN and PTEN mRNA of 76 cases normal gastric mucosa and 112 cases gastric carcinoma by immunohistochemistry EnVision method and molecular hybridization in situ method respectively. Detecting PTEN genetic mutation of 30 cases normal gastric mucosa, 7 cases early gastric cancer and 30 cases progressive gastric cancer by PCR-SSCP. Results: The expression of p130Cas protein of gastric carcinoma increased significantly than that of normal gastric mucosa (P 〈 0.05). Opposite to above, the expression of PTEN protein of gastric carcinoma group was significantly lower than that of normal gastric rnucosa group (P 〈 0.05). The expression of PTEN mRNA of gastric carcinoma group decreased obviously than normal gastric mucosa group (P 〈 0.001). Only one case exon 5 and one case exon 8 of PTEN appeared gene mutation of progressive gastric carcinoma group, the difference has no significance compared with normal gastric mucosa group and early gastric cancer group. Conclusion: The signaling molecules p130Cas and PTEN play an important role in the carcinogenesis of gastric carcinoma, and p130Cas plays the part of promoter, oppositely, maybe PTEN can inhibit it.展开更多
基金Supported by the National Science and Technology Major Project(2011ZX09102-010-04)
文摘Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay.Results The cell line bore a missense mutation in the 6th coding exon (c.676 C〉T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.
基金Supported by a grant from Sanitary Science and Technological Development Foundation of Shandong Province (No. 2003HW015)
文摘Objective: To research the contributions of p130Cas and PTEN signal molecules to the carcinogenesis of gastric carcinoma and the relationship between them. Methods: Detecting proteins of p130Cas, PTEN and PTEN mRNA of 76 cases normal gastric mucosa and 112 cases gastric carcinoma by immunohistochemistry EnVision method and molecular hybridization in situ method respectively. Detecting PTEN genetic mutation of 30 cases normal gastric mucosa, 7 cases early gastric cancer and 30 cases progressive gastric cancer by PCR-SSCP. Results: The expression of p130Cas protein of gastric carcinoma increased significantly than that of normal gastric mucosa (P 〈 0.05). Opposite to above, the expression of PTEN protein of gastric carcinoma group was significantly lower than that of normal gastric rnucosa group (P 〈 0.05). The expression of PTEN mRNA of gastric carcinoma group decreased obviously than normal gastric mucosa group (P 〈 0.001). Only one case exon 5 and one case exon 8 of PTEN appeared gene mutation of progressive gastric carcinoma group, the difference has no significance compared with normal gastric mucosa group and early gastric cancer group. Conclusion: The signaling molecules p130Cas and PTEN play an important role in the carcinogenesis of gastric carcinoma, and p130Cas plays the part of promoter, oppositely, maybe PTEN can inhibit it.