期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
M/M/1排队模型的l^1动态解及其稳定性 被引量:7
1
作者 李扬荣 《应用泛函分析学报》 CSCD 2000年第2期150-154,共5页
运用算子半群理论证明了 M/M/1排队模型的 l1动态解的稳定性和正等距性 .
关键词 M/M/1排队模型 等距半群 稳定 L^1动态解 正等距性
下载PDF
Robustness of orthogonal matching pursuit under restricted isometry property 被引量:7
2
作者 DAN Wei WANG RenHong 《Science China Mathematics》 SCIE 2014年第3期627-634,共8页
Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the O... Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that 5K+V/KOK,1 〈 1 is sufficient for the OMP algorithm to recover exactly the support of arbitrary /(-sparse signal if its nonzero components are large enough for both 12 bounded and lz~ bounded noises. 展开更多
关键词 compressed sensing orthogonal matching pursuit restricted isometry property
原文传递
Analysis of orthogonal multi-matching pursuit under restricted isometry property 被引量:4
3
作者 DAN Wei 《Science China Mathematics》 SCIE 2014年第10期2179-2188,共10页
Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance... Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance of OMMP under the restricted isometry property(RIP)is presented.We demonstrate that OMMP can exactly recover any K-sparse signal from fewer observations y=φx,provided that the sampling matrixφsatisfiesδKN-N+1+√K/NθKN-N+1,N〈1.Moreover,the performance of OMMP for support recovery from noisy observations is also discussed.It is shown that,for l_2 bounded and l_∞bounded noisy cases,OMMP can recover the true support of any K-sparse signal under conditions on the restricted isometry property of the sampling matrixφand the minimum magnitude of the nonzero components of the signal. 展开更多
关键词 sparse recovery orthogonal matching pursuit restricted isometry property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部