期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一个值域分解定理
1
作者 李克典 《数学杂志》 CSCD 2000年第3期335-337,共3页
本文证明了弱收敛﹀-空间的值域分解定理 ,且一般化了 [1 ]中的相应结果 .
关键词 弱收敛空间 点星形正紧空间 值域分解定理
下载PDF
A Note on Tight Frames 被引量:1
2
作者 李登峰 战阴伟 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第4期48-51,共4页
Suppose that Φ(x)∈L 2(R) with compact support and V= span{Φ(x-k)|k∈Z}. In this note, we prove that if {Φ(x-k)k|k∈Z} is tight frame with bound 1 in V, then {Φ(x-k)|k∈Z} must be an orthonormal basis of V.
关键词 FRAME tight frame orthonormal basis
下载PDF
关于亚紧空间与次亚紧空间的注记
3
作者 冯俊娥 《山东大学学报(自然科学版)》 CSCD 1998年第2期151-154,共4页
从正紧空间与次正紧空间的角度讨论了亚紧空间与次亚紧空间,得到了亚紧空间与次亚紧空间的两个表示定理;推广了Junnila的一个定理,得到了次亚紧空间的一个刻划.
关键词 亚紧空间 次亚紧空间 正紧空间 正紧空间
原文传递
On Inverse Limits of Normal δθ-refinable Spaces
4
作者 CAO Jin-wen (College of Information Management, Chengdu University of Technol ogy, Chengdu 610059, China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第3期286-290,共5页
This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-ref... This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-refinable, then X is normal and δθ-refinable; (B) If X is hereditarily λ-pa racompact and every X σ is hereditarily normal and hereditarily δθ- refinable, then X is hereditarily normal and hereditarily δθ-refiable . 展开更多
关键词 inverse limit Λ-PARACOMPACT normal and δθ -refinable hereditarily normal hereditarily δθ-refinable.
下载PDF
A Note on Spaces with Regular G_δ-Diagonals 被引量:1
5
作者 陈焕然 林寿 《Journal of Mathematical Research and Exposition》 CSCD 1999年第3期546-548,共3页
In this short note, using a Mysior'S example shows that a space with a regular Gδ-diagonal is not preserved by a finite-to-one and open map.
关键词 regular Gδ-diagonal finite-to-one map open map submentrizable space
下载PDF
Retakh's Conditions (M_0) and Weakly (Sequentially) Compact Regularity
6
作者 丘京辉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第3期325-331,共7页
Weakly (sequentially) compactly regular inductive limits and convex weakly (sequentially) compactly regular inductive limits are investigated. (LF)-spaces satisfying Retakh's condition (M0) are convex weakly (sequ... Weakly (sequentially) compactly regular inductive limits and convex weakly (sequentially) compactly regular inductive limits are investigated. (LF)-spaces satisfying Retakh's condition (M0) are convex weakly (sequentially) compactly regular but need not be weakly (sequentially) compactly regular. For countable inductive limits of weakly sequentially complete Frechet spaces, Retakh's condition (M0) implies weakly (sequentially) compact regularity. Particularly for Kothe (LF)-sequence spaces Ep(1 ≤ p < ∞), Retakh's condition (M0) is equivalent to weakly (sequentially) compact regularity. For those spaces, the characterizations of weakly (sequentially) compact regularity are given by using the related results of Vogt. 展开更多
关键词 inductive limits (LF)-spaces REGULARITY Retakh's condition (M0).
下载PDF
COMPOSITION OPERATORS ON BERGMAN SPACES 被引量:2
7
作者 J.H.CLIFFORD ZHENGDECHAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第4期433-448,共16页
The authors obtain function theoretic characterizations of the compactness on the standardweighted Bergman spaces of the two operators formed by multiplying a composition operatorwith the adjoint of another compositio... The authors obtain function theoretic characterizations of the compactness on the standardweighted Bergman spaces of the two operators formed by multiplying a composition operatorwith the adjoint of another composition operator. 展开更多
关键词 Bergman spaces Composition operator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部