期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
正规三角矩阵环上的高阶导子(英文)
被引量:
2
1
作者
鹿道伟
柯圆圆
+1 位作者
王飒飒
王顶国
《曲阜师范大学学报(自然科学版)》
CAS
2013年第3期29-32,共4页
该文的目的就是要计算正规三角矩阵环T=R M0()S上的高阶导子.设R,S为带有单位元的环且M为(R,S)双模.如果将此高阶导子记为d(r,m,s),则它就有如下形式:dn(r,m,s)=(δnR(r),τn(m),δnS(s))+∑n-1i=0[(δiR(r),τi(m),δiS(s)),mn-iE12]....
该文的目的就是要计算正规三角矩阵环T=R M0()S上的高阶导子.设R,S为带有单位元的环且M为(R,S)双模.如果将此高阶导子记为d(r,m,s),则它就有如下形式:dn(r,m,s)=(δnR(r),τn(m),δnS(s))+∑n-1i=0[(δiR(r),τi(m),δiS(s)),mn-iE12].经过计算,就可以得到δR={δnR}n∈N与δS={δnS}n∈N分别为R和S上的高阶导子,并且映射集τ={τn}n∈N与(δR,δS)相关.
展开更多
关键词
高阶导子
正规三角矩阵环
环
同态
模
下载PDF
职称材料
题名
正规三角矩阵环上的高阶导子(英文)
被引量:
2
1
作者
鹿道伟
柯圆圆
王飒飒
王顶国
机构
曲阜师范大学数学科学学院
出处
《曲阜师范大学学报(自然科学版)》
CAS
2013年第3期29-32,共4页
基金
supported by the National Natural Science Foundation of China(Grant No.11171183)
the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2011AM013)
文摘
该文的目的就是要计算正规三角矩阵环T=R M0()S上的高阶导子.设R,S为带有单位元的环且M为(R,S)双模.如果将此高阶导子记为d(r,m,s),则它就有如下形式:dn(r,m,s)=(δnR(r),τn(m),δnS(s))+∑n-1i=0[(δiR(r),τi(m),δiS(s)),mn-iE12].经过计算,就可以得到δR={δnR}n∈N与δS={δnS}n∈N分别为R和S上的高阶导子,并且映射集τ={τn}n∈N与(δR,δS)相关.
关键词
高阶导子
正规三角矩阵环
环
同态
模
Keywords
higher derivation
formal triangular matrix ring
ring homomorphism
module
分类号
O153.3 [理学—基础数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
正规三角矩阵环上的高阶导子(英文)
鹿道伟
柯圆圆
王飒飒
王顶国
《曲阜师范大学学报(自然科学版)》
CAS
2013
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部