期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
贝叶斯正规化算法在油藏参数拟合方面的应用
1
作者 潘永才 单文兵 +1 位作者 张尚辉 王富 《物联网技术》 2012年第4期45-47,共3页
通过已知测井资料对油藏储量进行预测,是目前石油行业一个重要的研究课题。文章介绍了一种基于贝叶斯正规化算法的BP神经网络,并把网络应用到油藏参数拟合过程中的具体方法,该方法对提高石油生产效率、降低成本具有很大的作用。
关键词 油藏 拟合 贝叶斯 正规化算法 神经网络
下载PDF
稀疏有限元线性系统的并行算法实现
2
作者 张哲 《计算机工程与应用》 CSCD 北大核心 2010年第29期47-49,52,共4页
在对称多处理机系统上,提出了一种求解稀疏对称有限元线性系统的正规化精确并行逆算法。该算法以一种避免数据依赖的反对角运动方法为基础,使用OpenMP编译指导来实现。诸如加速比和效率等数值实验结果的推出,说明在一个对称多处理机系统... 在对称多处理机系统上,提出了一种求解稀疏对称有限元线性系统的正规化精确并行逆算法。该算法以一种避免数据依赖的反对角运动方法为基础,使用OpenMP编译指导来实现。诸如加速比和效率等数值实验结果的推出,说明在一个对称多处理机系统上,所提出的算法求解方法能更好地提高性能,获得更大的加速。 展开更多
关键词 稀疏线性系统 正规化精确并行逆算法 OPENMP
下载PDF
贝叶斯改进BP神经网络在织物染色配色中的应用 被引量:1
3
作者 聂晴晴 张秉森 +3 位作者 李含春 王巍娟 韩蔚 司学锋 《青岛大学学报(工程技术版)》 CAS 2008年第4期45-49,共5页
针对BP算法及其改进算法泛化能力不强的问题,探讨了用贝叶斯正规化算法与LM算法的结合来提高BP神经网络的泛化能力。结果表明,在相同网络规模或误差条件下,贝叶斯正规化算法泛化能力明显优于基本BP算法及其它改进的BP算法,且收敛速度较... 针对BP算法及其改进算法泛化能力不强的问题,探讨了用贝叶斯正规化算法与LM算法的结合来提高BP神经网络的泛化能力。结果表明,在相同网络规模或误差条件下,贝叶斯正规化算法泛化能力明显优于基本BP算法及其它改进的BP算法,且收敛速度较快。因此文中把贝叶斯正规化算法与LM算法结合应用到了织物染色的计算机配色中,其预测的配方和实验的数据比较接近,证明了该方法的可行性。 展开更多
关键词 BP算法 贝叶斯正规化算法 LM算法 计算机配色
下载PDF
An analysis method for correlation between catenary irregularities and pantograph-catenary contact force 被引量:1
4
作者 秦勇 张媛 +2 位作者 程晓卿 贾利民 邢宗义 《Journal of Central South University》 SCIE EI CAS 2014年第8期3353-3360,共8页
Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the c... Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the correlated relationship between catenary irregularities and pantograph-catenary contact force,a method based on nonlinear auto-regressive with exogenous input(NARX) neural networks was developed.First,to collect the test data of catenary irregularities and contact force,the pantograph/catenary dynamics model was established and dynamic simulation was conducted using MATLAB/Simulink.Second,catenary irregularities were used as the input to NARX neural network and the contact force was determined as output of the NARX neural network,in which the neural network was trained by an improved training mechanism based on the regularization algorithm.The simulation results show that the testing error and correlation coefficient are 0.1100 and 0.8029,respectively,and the prediction accuracy is satisfactory.And the comparisons with other algorithms indicate the validity and superiority of the proposed approach. 展开更多
关键词 catenary irregularities pantograph-catenary contact force NARX neural networks correlation analysis
下载PDF
Efficient multiuser detector based on box-constrained dichotomous coordinate descent and regularization 被引量:1
5
作者 全智 刘杰 《Journal of Central South University》 SCIE EI CAS 2012年第6期1570-1576,共7页
The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated... The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated algorithm.The deregularization maximized the energy of the solution,which was opposite to the Tikhonov regularization where the energy was minimized.However,combined with box-constraints,the deregularization forced the solution to be close to the binary set.It further exploited the box-constrained dichotomous coordinate descent algorithm and adapted it to the nonstationary iterative Tikhonov regularization to present an efficient detector.As a result,the worst-case and average complexity are reduced down as K2.8 and K2.5 floating point operation per second,respectively.The development improves the "efficient frontier" in multiuser detection,which is illustrated by simulation results.In addition,most operations in the detector are additions and bit-shifts.This makes the proposed technique attractive for fixed-point hardware implementation. 展开更多
关键词 dichotomous coordinate descent de-regularization low complexity multiuser detection Tikhonov regularization
下载PDF
BP神经网络技术在城市建筑热环境研究中的应用
6
作者 李宁 刘金祥 +2 位作者 陈晓春 李雅昕 丁高 《建筑科学》 北大核心 2010年第2期103-107,共5页
本文针对现代城市中越来越严重的热岛现象与能源问题,首先分析了北京市近60年的温度资料,可知60年来城区内的年平均温度升高了2.28℃,温度增幅为0.38℃/10 a。而后综合考虑城市建筑热环境的各种影响因素,利用BP神经网络技术建立了城市... 本文针对现代城市中越来越严重的热岛现象与能源问题,首先分析了北京市近60年的温度资料,可知60年来城区内的年平均温度升高了2.28℃,温度增幅为0.38℃/10 a。而后综合考虑城市建筑热环境的各种影响因素,利用BP神经网络技术建立了城市尺度下针对建筑热环境(温度)的预测模型,并对以往的数学模型和计算方法进行了改进。在改进后的预测模型中,通过枚举法选择隐含层最佳神经元个数,用贝叶斯正规化算法进行了网络训练,结果表明:与BP神经网络基本的L-M优化算法相比,该算法有较高的泛化能力和准确性,更适合于这一问题的研究。 展开更多
关键词 城市建筑热环境 温度增幅 BP神经网络 隐含层最佳神经元个数 贝叶斯正规化算法
原文传递
Properties and Iterative Methods for the Lasso and Its Variants 被引量:6
7
作者 Hong-Kun XU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第3期501-518,共18页
The lasso of Tibshirani (1996) is a least-squares problem regularized by the l1 norm. Due to the sparseness promoting property of the l1 norm, the lasso has been received much attention in recent years. In this pape... The lasso of Tibshirani (1996) is a least-squares problem regularized by the l1 norm. Due to the sparseness promoting property of the l1 norm, the lasso has been received much attention in recent years. In this paper some basic properties of the lasso and two variants of it are exploited. Moreover, the proximal method and its variants such as the relaxed proximal algorithm and a dual method for solving the lasso by iterative algorithms are presented. 展开更多
关键词 Lasso Elastic net Smooth-lasso l1 regulaxization SPARSITY Proximalmethod Dual method Projection THRESHOLDING
原文传递
Learning rates of regularized regression on the unit sphere 被引量:2
8
作者 CAO FeiLong LIN ShaoBo +1 位作者 CHANG XiangYu XU ZongBen 《Science China Mathematics》 SCIE 2013年第4期861-876,共16页
This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The exces... This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The excess error can be estimated by the sum of sample errors and regularization errors.Our study shows that by introducing a suitable spherical harmonics kernel,the regularization parameter can decrease arbitrarily fast with the sample size. 展开更多
关键词 SPHERE regularized regression spherical harmonics kernel rate of convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部