期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
P^N(C)中去掉非退化超平面系的一个正规定则
1
作者 陈志华 刘远成 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第3期351-355,共5页
判定一族函数是否是正规族一直是复分析理论中比较热门的一个活题 .基于涂振汉的一个改良的正规性准则 ,并且运用值分布理论中的一个双曲性判定 ,得到了复投射空间中去掉非退化超平面系的一个正规性定则 。
关键词 正规性定则 全纯映射 非退化超平面系
下载PDF
正规族与高阶导数分担值
2
作者 张太忠 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期55-61,共7页
设f(z)和g(z)在复平面的一个区域G内亚纯,α∈C=C∪│∞│,若f(z)-α和g(z)-α在G内具有相同的零点,则α称为函数f(z)和g(z)在G内的分担值,当零点计重数或不计重数时,则α分别称为函数f(z)和g(z)在G内的CM分担值或IM分担值.研究在函数... 设f(z)和g(z)在复平面的一个区域G内亚纯,α∈C=C∪│∞│,若f(z)-α和g(z)-α在G内具有相同的零点,则α称为函数f(z)和g(z)在G内的分担值,当零点计重数或不计重数时,则α分别称为函数f(z)和g(z)在G内的CM分担值或IM分担值.研究在函数与其高阶导数具有分担值的条件下函数族的正规性定则,证明了一个区域G上的全纯函数族F是正规的,如果两个不同的有穷复数为族F中每个函数及其k阶导数在G中的CM分担值,且族F中每个函数的零点重级≥k(k为自然数).例子表明本文定理中对函数零点重级的限制至少在k=2时是精确的. 展开更多
关键词 全纯函数 高阶导数 正规 CM分担值 IM分担值 复变函数 正规性定则 零点
下载PDF
Solving Severely Ill⁃Posed Linear Systems with Time Discretization Based Iterative Regularization Methods 被引量:1
3
作者 GONG Rongfang HUANG Qin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期979-994,共16页
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced... Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method. 展开更多
关键词 linear system ILL-POSEDNESS LARGE-SCALE iterative regularization methods ACCELERATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部