设 Q 是有理数域,K 是 Q 的 n 次伽罗瓦扩域,再设 K 在 Q 上的伽罗瓦群 Gal(K/Q)={τ_1,τ_2,…,τ_η},如果存在 K 中的代数整数α,使{τ_1(α),τ_2(α),…,τ_n(α)}是 K 的整基,则称 K 具有正规整基。冯克勤同志在文[1]中指出“一...设 Q 是有理数域,K 是 Q 的 n 次伽罗瓦扩域,再设 K 在 Q 上的伽罗瓦群 Gal(K/Q)={τ_1,τ_2,…,τ_η},如果存在 K 中的代数整数α,使{τ_1(α),τ_2(α),…,τ_n(α)}是 K 的整基,则称 K 具有正规整基。冯克勤同志在文[1]中指出“一个伽罗瓦数域何时具有正规整基,这个问题也有一定的理论价值”.本文给出了解决这一问题的一个方法.展开更多
文摘设 Q 是有理数域,K 是 Q 的 n 次伽罗瓦扩域,再设 K 在 Q 上的伽罗瓦群 Gal(K/Q)={τ_1,τ_2,…,τ_η},如果存在 K 中的代数整数α,使{τ_1(α),τ_2(α),…,τ_n(α)}是 K 的整基,则称 K 具有正规整基。冯克勤同志在文[1]中指出“一个伽罗瓦数域何时具有正规整基,这个问题也有一定的理论价值”.本文给出了解决这一问题的一个方法.