In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection be...In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.展开更多
In this paper, let T be a bounded linear operator on a complex Hilbert H. We give and prove that every p-w-hyponormal operator has Bishop's property(β) and spectral properties; Quasi-similar p-w-hyponormal operat...In this paper, let T be a bounded linear operator on a complex Hilbert H. We give and prove that every p-w-hyponormal operator has Bishop's property(β) and spectral properties; Quasi-similar p-w-hyponormal operators have equal spectra and equal essential spectra. Finally, for p-w-hyponormal operators, we give a kind of proof of its normality by use of properties of partial isometry.展开更多
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced...Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.展开更多
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit ...In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.展开更多
this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al....this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.展开更多
Consider the system of integral equations with weighted functions in Rn,{u(x) =∫Rn|x-y|α-nQ(y)v(y)qdy1,v(x)=∫Rn|x-y|α-nK(y)u(y)pdy,where 0 < α < n,1/(p+1) + 1/(q+1)≥(n-α)/n1,α/(n-α) < p1q < ∞1,Q(...Consider the system of integral equations with weighted functions in Rn,{u(x) =∫Rn|x-y|α-nQ(y)v(y)qdy1,v(x)=∫Rn|x-y|α-nK(y)u(y)pdy,where 0 < α < n,1/(p+1) + 1/(q+1)≥(n-α)/n1,α/(n-α) < p1q < ∞1,Q(x) and K(x) satisfy some suitable conditions.It is shown that every positive regular solution(u(x)1,v(x)) is symmetric about some plane by developing the moving plane method in an integral form.Moreover,regularity of the solution is studied.Finally,the nonexistence of positive solutions to the system in the case 0 < p1q <(n+α)/(n-α) is also discussed.展开更多
基金the Science Research Foundation of Qingdao Technological University(C2002-214)
文摘In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.
基金Natural Science and Education Foundation of Henan Province(2007110016)
文摘In this paper, let T be a bounded linear operator on a complex Hilbert H. We give and prove that every p-w-hyponormal operator has Bishop's property(β) and spectral properties; Quasi-similar p-w-hyponormal operators have equal spectra and equal essential spectra. Finally, for p-w-hyponormal operators, we give a kind of proof of its normality by use of properties of partial isometry.
基金supported by the Natural Science Foundation of China (Nos. 11971230, 12071215)the Fundamental Research Funds for the Central Universities(No. NS2018047)the 2019 Graduate Innovation Base(Laboratory)Open Fund of Jiangsu Province(No. Kfjj20190804)
文摘Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.
基金The project supported by the Natural Science Foundation of Shandong Province under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.
基金Supported in part by NSFC(No.11961011)Guangxi Science and Technology Base and Talents Special Project(No.2021AC06001).
文摘this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.
基金supported by Chinese National Science Fund for Distinguished Young Scholars (Grant No.10925104)National Natural Science Foundation of China (Grant No.11001221)+1 种基金the Foundation of Shaanxi Province Education Department (Grant No. 2010JK549)the Foundation of Xi’an Statistical Research Institute (Grant No.10JD04)
文摘Consider the system of integral equations with weighted functions in Rn,{u(x) =∫Rn|x-y|α-nQ(y)v(y)qdy1,v(x)=∫Rn|x-y|α-nK(y)u(y)pdy,where 0 < α < n,1/(p+1) + 1/(q+1)≥(n-α)/n1,α/(n-α) < p1q < ∞1,Q(x) and K(x) satisfy some suitable conditions.It is shown that every positive regular solution(u(x)1,v(x)) is symmetric about some plane by developing the moving plane method in an integral form.Moreover,regularity of the solution is studied.Finally,the nonexistence of positive solutions to the system in the case 0 < p1q <(n+α)/(n-α) is also discussed.