期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Pell Equations x^2-8y^2=1 and y^2-Dz^2=1 被引量:2
1
作者 潘家宇 张玉萍 邹荣 《Chinese Quarterly Journal of Mathematics》 CSCD 1999年第1期73-77, ,共5页
In this paper,we have proved that if one of the following conditions is satisfed,then the equations in title has no positive integer solution:①D=∏si=1P i or D=2∏si=1P i and \{ P i≡3 (mod 4)\} (1≤i≤s) or P i≡5 (... In this paper,we have proved that if one of the following conditions is satisfed,then the equations in title has no positive integer solution:①D=∏si=1P i or D=2∏si=1P i and \{ P i≡3 (mod 4)\} (1≤i≤s) or P i≡5 (mod 8) (i≤i≤s); ② D=∏si=1P i-1 (mod 12), 1≤s≤7 and \{D≠3·5·7·11·17·577,7·19·29·41·59·577;\} ③ D=2∏si=1P i,1≤s≤6 and \{D ≠2·17,2·3·5·7·11·17,2·17·113·239·337·577·665857;\} ④ D=∏si=1P i≡-1 (mod 12), 1≤s≤3 and D≠ 5·7,29·41·239. 展开更多
关键词 Pell equation INTEGER prime factor
下载PDF
综合棋力训练
2
《围棋天地》 2003年第16期59-60,共2页
关键词 综合棋力 训练 围棋 布局 中盘 手筋 死活 正解图 失败 变化
原文传递
On the solutions of a system of two Diophantine equations 被引量:4
3
作者 LUO JiaGui YUAN PingZhi 《Science China Mathematics》 SCIE 2014年第7期1401-1418,共18页
We obtain all positive integer solutions(m1,m2,a,b) with a &gt; b,gcd(a,b) = 1 to the system of Diophantine equations km21- lat1bt2a2r= C1,km22- lat1bt2b2r= C2,with C1,C2 ∈ {-1,1,-2,2,-4,4},and k,l,t1,t2,r ∈ Z ... We obtain all positive integer solutions(m1,m2,a,b) with a &gt; b,gcd(a,b) = 1 to the system of Diophantine equations km21- lat1bt2a2r= C1,km22- lat1bt2b2r= C2,with C1,C2 ∈ {-1,1,-2,2,-4,4},and k,l,t1,t2,r ∈ Z such that k &gt; 0,l &gt; 0,r &gt; 0,t1 &gt; 0,t2 0,gcd(k,l) = 1,and k is square-free. 展开更多
关键词 minimal solution fundamental solution Jacobi symbol Diophantine equation
原文传递
On the size of the intersection of two Lucas sequences of distinct type Ⅱ
4
作者 CIPU Mihai MIGNOTTE Maurice TOGB Alain 《Science China Mathematics》 SCIE 2011年第7期1299-1316,共18页
Let a and b be positive integers, with a not perfect square and b > 1. Recently, He, Togband Walsh proved that the Diophantine equation x2-a((bk-1)/(b-1))2=1 has at most three solutions in positive integers. Moreov... Let a and b be positive integers, with a not perfect square and b > 1. Recently, He, Togband Walsh proved that the Diophantine equation x2-a((bk-1)/(b-1))2=1 has at most three solutions in positive integers. Moreover, they showed that if max{a,b} > 4.76·1051, then there are at most two positive integer solutions (x,k). In this paper, we sharpen their result by proving that this equation always has at most two solutions. 展开更多
关键词 Diophantine equation exponential equation linear forms in logarithms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部