A voltage controlled oscillator (VCO) which can generate 2 4GHz quadrature local oscillating (LO) signals is reported.It combines a LC VCO,realized by on chip symmetrical spiral inductors and differential diodes,an...A voltage controlled oscillator (VCO) which can generate 2 4GHz quadrature local oscillating (LO) signals is reported.It combines a LC VCO,realized by on chip symmetrical spiral inductors and differential diodes,and a two stage ring VCO.The principle of this VCO is demonstrated and further the phase noise is discussed in detail.The fabrication of prototype is demonstrated using 0 25μm single poly five metal N well salicide CMOS digital process.The reports show that the novel VCO is can generate quadrature LO signals with a tuning range of more than 300MHz as well as the phase noise--104 33dBc/Hz at 600KHz offset at 2 41GHz (when measuring only one port of differential outputs).In addition,this VCO can work in low power supply voltage and dissipate low power,thus it can be used in many integrated transceivers.展开更多
By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation,the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation,broaden the freque...By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation,the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation,broaden the frequency bandwidth,and improve both the resolution and fidelity of the seismic data.It is thus widely used in industry.However,it is difficult to ensure good coupling of the geophones with the seabed because of the impact of ocean flow,seafloor topography,and field operations;therefore,geophone data are seriously affected by the transfer function of the geophone-seabed coupling system.As a result,geophone data frequently have low signal-to-noise ratios(S/N),which causes large differences in amplitude,frequency,and phases between geophone and hydrophone data that severely affect dual-sensor summation.In contrast,the hydrophone detects changes in brine pressure and has no coupling issues with the seabed;thus,hydrophone data always have good S/N.First,in this paper,the mathematical expression of the transfer function between geophone and seabed is presented.Second,the transfer function of the geophone-seabed is estimated using hydrophone data as reference traces,and finally,the coupling correction based on the estimated transfer function is implemented.Using this processing,the amplitude and phase differences between geophone and hydrophone data are removed,and the S/N of the geophone data are improved.Synthetic and real data examples then show that our method is feasible and practical.展开更多
Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) sys...Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.展开更多
The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,anten...The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,antennas,time slots,and power are jointly considered.The problem of multi-dimensional resource allocation is formulated as a mixed-integer nonlinear programming problem.The effect of the moving speed on Doppler shift is analyzed to calculate the inter-carrier interference power.The optimization objective is to maximize the system throughput under the constraint of a total transmitted power that is no greater than a certain threshold.In order to reduce the computational complexity,a suboptimal solution to the optimization problem is obtained by a two-step method.First,sub-carriers,antennas,and time slots are assigned to users under the assumption of equal power allocation.Next,the power allocation problem is solved according to the result of the first-step resource allocation.Simulation results show that the proposed multi-dimensional resource allocation strategy has a significant performance improvement in terms of system throughput compared with the existing one.展开更多
One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are ne...One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.展开更多
This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress In...This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress Inter-User Interference (IUI), the array input is first transformed into the signal subspace, then with the derived orthogonality between weight vectors of different input signals, a new orthogonal Constant Modulus Algorithm (CMA) is proposed. Computer simulation results illustrate the promising performance of the proposed method. Without channel identification, the proposed method can recover all the system inputs simultaneously and can be adaptive to channel changes without prior knowledge about signals.展开更多
In Multiple-Input Multiple-Out (MIMO) systems, the user selection algorithm plays an important role in the realization of multiplexing gain. In this paper, an improved Semi-orthogonal User Selection algorithm based ...In Multiple-Input Multiple-Out (MIMO) systems, the user selection algorithm plays an important role in the realization of multiplexing gain. In this paper, an improved Semi-orthogonal User Selection algorithm based on condition number is proposed. Besides, a new MIMO pre- coding scheme is designed. The proposed SUS- CN (SUS with condition number) algorithm outperforms the SUS algorithm for the selection of users with better matrix inversion property, thus a higher information rate for selected user pair is achieved. The designed MIMO precoding matrix brings benefits of the power equality at transmitted terminals, the limited dynamic range of the power over time, and a better power efficiency. The simulation results give the key insights into the im- pact of the different condition number value and users on the sum-rate capacity.展开更多
The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input mul...The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.展开更多
Teleportation of an arbitrary two-qubit state with a single partially entangled state,a four-qubit linearcluster-class state,is studied.The case is more practical than previous ones using maximally entangled states as...Teleportation of an arbitrary two-qubit state with a single partially entangled state,a four-qubit linearcluster-class state,is studied.The case is more practical than previous ones using maximally entangled states as thequantum channel.In order to realize teleportation,we first construct a cluster-basis of 16 orthonormal cluster states.We show that quantum teleportation can be successfully implemented with a certain probability if the receiver can adoptappropriate unitary transformations after receiving the sender's cluster-basis measurement information.In addition,animportant conclusion can be obtained that a four-qubit maximally entangled state (cluster state) can be extracted froma single copy of the cluster-class state with the same probability as the teleportation in principle.展开更多
The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation ...The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.展开更多
In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to ea...In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to each transmit antenna. Each of the output symbols from the multiple trellis encoder is multiplied with one of these orthogonal vectors and transmitted from corresponding transmit antennas. By correlating with corresponding orthogonal vectors, the receiver separates symbols transmitted from different transmit antennas. This scheme can be adopted in coherent/differential systems with any number of transmit antennas. It is shown that the proposed scheme encompasses the conventional trellis coded unitary space-time modulation based on the optimal cyclic group codes as a special case. We also propose two better designs over the conventional trellis coded unitary space-time modulation. The first design uses 8 Phase Shift Keying (8-PSK) constellations instead of 16 Phase Shift Keying (16-PSK) constellations in the conventional trellis coded unitary space-time modulation. As a result, the product distance of this new design is much larger than that of the conventional trellis coded unitary space-time modulation. The second design introduces constellations with multiple levels of amplitudes into the design of the multiple trellis coded orthogonal transmit scheme. For both designs, simulations show that multiple trellis coded orthogonal transmit schemes can achieve better performance than the conventional trellis coded unitarv space-time schemes.展开更多
We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is u...We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of m supervisors such that k (k≤ m) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. Their properties are compared and contrasted with those of the well-known GHZ, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in the literature.展开更多
The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existin...The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+ Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore, the simulation results for the RS(255,239) +RS(255,239) code and the RS(255,239) +RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction, moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes, and their signal to noise ratio gains are respectively 2-3 dB more than that of the RS(255,239)code at the bit error rate of 1 × 10^-13. Finally, the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.展开更多
Multi-input multi-output orthogonal frequency division multiplexing(MIMO-OFDM)is the foremost space interface for 4Gand 5Gbroadband wireless communication.MIMO can transmit diverse signals over multiple antennas and...Multi-input multi-output orthogonal frequency division multiplexing(MIMO-OFDM)is the foremost space interface for 4Gand 5Gbroadband wireless communication.MIMO can transmit diverse signals over multiple antennas and OFDM can divide a radio channel into a huge number of closely spaced sub channels to afford more reliable communications at high speed.Research show that MIMO can be used with other well-liked wireless interfaces such as time division multiple access(TDMA)and code division multiple access(CDMA),the amalgamation of MIMO and OFDM is most realistic at higher data rates.It is conclude that by using different turbo coding rate,we are getting improved bit error rate(BER).展开更多
As the important complementary to terrestrial mobile communications, Internet via satellite can extend the coverage of communication and improve the continuity of data services. To build a space-terrestrial integrated...As the important complementary to terrestrial mobile communications, Internet via satellite can extend the coverage of communication and improve the continuity of data services. To build a space-terrestrial integrated communication system is the inevitable trend in the future. Taking into account combination of 5th generation(5G) terrestrial mobile communication system and satellite communication system, it is necessary to evaluate the promising 5G air interface waveform which can be adopted by satellite. In this paper, several non-orthogonal multi-carrier transmission schemes are evaluated and generalized frequency division multiplexing(GFDM) is advised as potential scheme of space-terrestrial integrated communication system. After the overview of GFDM, the implementation of GFDM transceiver is discussed respectively in time-domain and in frequency-domain. By deriving and comparing implementation complexity, GFDM modulation in time-domain is more suitable for satellite communication system. Then the properties of demodulation algorithms are specified. Based on designed pilot subcarriers, a new improved receiving algorithm is proposed in the end of the paper. The improved algorithm solves the problem of inter subcarriers interference(ICI) in matched filtering(MF) receiver and improves the re-ceiving symbol error rate(SER) obviously. The simulation and analysis prove that the proposed algorithm is effective.展开更多
By swapping the entanglement of genuine four-particle entangled states,we propose a bidirectional quantumsecure communication protocol.The biggest merit of this protocol is that the information leakage does not exist....By swapping the entanglement of genuine four-particle entangled states,we propose a bidirectional quantumsecure communication protocol.The biggest merit of this protocol is that the information leakage does not exist.Inaddition,the ideas of the 'two-step' transmission and the block transmission are employed in this protocol.In order toanalyze the security of the second sequence transmission,decoy states are used.展开更多
This paper addresses the problem of channel estimation for broadband MIMO-OFDM systems. An improved channel estimator with multipath time delay detection and channel gain estimation is proposed. In the algorithm, we u...This paper addresses the problem of channel estimation for broadband MIMO-OFDM systems. An improved channel estimator with multipath time delay detection and channel gain estimation is proposed. In the algorithm, we used the correlation of the channel taps and a well-designed adjustment scheme to increase the accuracy of the time delay detection. The most attractive advantage is that the complicated matrix calculation is replaced by search steps which can acquire the channel order and estimate the channel parameters without significantly increasing the complexity of the system. Computer simulation showed that the proposed algorithm can track the time delays adaptively and, consequently, improve the channel estimation performance.展开更多
文摘A voltage controlled oscillator (VCO) which can generate 2 4GHz quadrature local oscillating (LO) signals is reported.It combines a LC VCO,realized by on chip symmetrical spiral inductors and differential diodes,and a two stage ring VCO.The principle of this VCO is demonstrated and further the phase noise is discussed in detail.The fabrication of prototype is demonstrated using 0 25μm single poly five metal N well salicide CMOS digital process.The reports show that the novel VCO is can generate quadrature LO signals with a tuning range of more than 300MHz as well as the phase noise--104 33dBc/Hz at 600KHz offset at 2 41GHz (when measuring only one port of differential outputs).In addition,this VCO can work in low power supply voltage and dissipate low power,thus it can be used in many integrated transceivers.
文摘By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation,the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation,broaden the frequency bandwidth,and improve both the resolution and fidelity of the seismic data.It is thus widely used in industry.However,it is difficult to ensure good coupling of the geophones with the seabed because of the impact of ocean flow,seafloor topography,and field operations;therefore,geophone data are seriously affected by the transfer function of the geophone-seabed coupling system.As a result,geophone data frequently have low signal-to-noise ratios(S/N),which causes large differences in amplitude,frequency,and phases between geophone and hydrophone data that severely affect dual-sensor summation.In contrast,the hydrophone detects changes in brine pressure and has no coupling issues with the seabed;thus,hydrophone data always have good S/N.First,in this paper,the mathematical expression of the transfer function between geophone and seabed is presented.Second,the transfer function of the geophone-seabed is estimated using hydrophone data as reference traces,and finally,the coupling correction based on the estimated transfer function is implemented.Using this processing,the amplitude and phase differences between geophone and hydrophone data are removed,and the S/N of the geophone data are improved.Synthetic and real data examples then show that our method is feasible and practical.
基金The National Natural Science Foundation of China(No.60702028)the National High Technology Research and Development Program of China(863Program)(No.2007AA01Z268)
文摘Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.
基金The National Science and Technology Major Project (No.2011ZX03001-007-03)the National Natural Science Foundation of China(No.61271182)
文摘The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,antennas,time slots,and power are jointly considered.The problem of multi-dimensional resource allocation is formulated as a mixed-integer nonlinear programming problem.The effect of the moving speed on Doppler shift is analyzed to calculate the inter-carrier interference power.The optimization objective is to maximize the system throughput under the constraint of a total transmitted power that is no greater than a certain threshold.In order to reduce the computational complexity,a suboptimal solution to the optimization problem is obtained by a two-step method.First,sub-carriers,antennas,and time slots are assigned to users under the assumption of equal power allocation.Next,the power allocation problem is solved according to the result of the first-step resource allocation.Simulation results show that the proposed multi-dimensional resource allocation strategy has a significant performance improvement in terms of system throughput compared with the existing one.
基金supported in part by National Natural Science Funds for Creative Research Groups of China under Grant No. 61421061Huawei Innovation Research ProgramOpen Research Fund in Xi’an Jiaotong University under Grant No. sklms2015015
文摘One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.
文摘This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress Inter-User Interference (IUI), the array input is first transformed into the signal subspace, then with the derived orthogonality between weight vectors of different input signals, a new orthogonal Constant Modulus Algorithm (CMA) is proposed. Computer simulation results illustrate the promising performance of the proposed method. Without channel identification, the proposed method can recover all the system inputs simultaneously and can be adaptive to channel changes without prior knowledge about signals.
基金This paper was supported by the National Natural Science Foundation of China under Grant No.61390513 and 61201225,and National Science and Technology Major Project of China under Grant No.2013ZX03003004,the Natural Science Foundation of Shanghai under Grant No.12ZR1450800,and sponsored by Shanghai Pujiang Program under Grant No.13PJD030.It was also supported by the Fundamental Research Funds for the Central Universities under Grant No.20140767,the Program for Young Excellent Talents in Tongji University under Grant No.2013KJ007,and 'Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant No.13CG18
文摘In Multiple-Input Multiple-Out (MIMO) systems, the user selection algorithm plays an important role in the realization of multiplexing gain. In this paper, an improved Semi-orthogonal User Selection algorithm based on condition number is proposed. Besides, a new MIMO pre- coding scheme is designed. The proposed SUS- CN (SUS with condition number) algorithm outperforms the SUS algorithm for the selection of users with better matrix inversion property, thus a higher information rate for selected user pair is achieved. The designed MIMO precoding matrix brings benefits of the power equality at transmitted terminals, the limited dynamic range of the power over time, and a better power efficiency. The simulation results give the key insights into the im- pact of the different condition number value and users on the sum-rate capacity.
基金Foundation item:The National Natural Science Foundation of China(No.60496311)
文摘The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.
基金Supported by the Natural Science Foundation of Hunan Province under Grant No.06JJ5015the Scientific Research Fund of Hunan Provincial Education Department under Grant No.06C354
文摘Teleportation of an arbitrary two-qubit state with a single partially entangled state,a four-qubit linearcluster-class state,is studied.The case is more practical than previous ones using maximally entangled states as thequantum channel.In order to realize teleportation,we first construct a cluster-basis of 16 orthonormal cluster states.We show that quantum teleportation can be successfully implemented with a certain probability if the receiver can adoptappropriate unitary transformations after receiving the sender's cluster-basis measurement information.In addition,animportant conclusion can be obtained that a four-qubit maximally entangled state (cluster state) can be extracted froma single copy of the cluster-class state with the same probability as the teleportation in principle.
基金Supported by National Natural Science Foundation of China (60472054)
文摘The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.
基金Supported by the National Natural Science Foundation of China(No.60390540).
文摘In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to each transmit antenna. Each of the output symbols from the multiple trellis encoder is multiplied with one of these orthogonal vectors and transmitted from corresponding transmit antennas. By correlating with corresponding orthogonal vectors, the receiver separates symbols transmitted from different transmit antennas. This scheme can be adopted in coherent/differential systems with any number of transmit antennas. It is shown that the proposed scheme encompasses the conventional trellis coded unitary space-time modulation based on the optimal cyclic group codes as a special case. We also propose two better designs over the conventional trellis coded unitary space-time modulation. The first design uses 8 Phase Shift Keying (8-PSK) constellations instead of 16 Phase Shift Keying (16-PSK) constellations in the conventional trellis coded unitary space-time modulation. As a result, the product distance of this new design is much larger than that of the conventional trellis coded unitary space-time modulation. The second design introduces constellations with multiple levels of amplitudes into the design of the multiple trellis coded orthogonal transmit scheme. For both designs, simulations show that multiple trellis coded orthogonal transmit schemes can achieve better performance than the conventional trellis coded unitarv space-time schemes.
基金Supported by National Natural Science Foundation of China under Grant Nos.11004050 and 10874019Key Project of Chinese Ministry of Education under Grant No.211119+2 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant Nos.10B013 and 09A013Excellent Talents Program of Hengyang Normal University of China under Grant No.2010YCJH01Science Foundation of Hengyang Normal University of China under Grant No.10B69
文摘We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of m supervisors such that k (k≤ m) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. Their properties are compared and contrasted with those of the well-known GHZ, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in the literature.
文摘The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+ Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore, the simulation results for the RS(255,239) +RS(255,239) code and the RS(255,239) +RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction, moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes, and their signal to noise ratio gains are respectively 2-3 dB more than that of the RS(255,239)code at the bit error rate of 1 × 10^-13. Finally, the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.
文摘Multi-input multi-output orthogonal frequency division multiplexing(MIMO-OFDM)is the foremost space interface for 4Gand 5Gbroadband wireless communication.MIMO can transmit diverse signals over multiple antennas and OFDM can divide a radio channel into a huge number of closely spaced sub channels to afford more reliable communications at high speed.Research show that MIMO can be used with other well-liked wireless interfaces such as time division multiple access(TDMA)and code division multiple access(CDMA),the amalgamation of MIMO and OFDM is most realistic at higher data rates.It is conclude that by using different turbo coding rate,we are getting improved bit error rate(BER).
文摘As the important complementary to terrestrial mobile communications, Internet via satellite can extend the coverage of communication and improve the continuity of data services. To build a space-terrestrial integrated communication system is the inevitable trend in the future. Taking into account combination of 5th generation(5G) terrestrial mobile communication system and satellite communication system, it is necessary to evaluate the promising 5G air interface waveform which can be adopted by satellite. In this paper, several non-orthogonal multi-carrier transmission schemes are evaluated and generalized frequency division multiplexing(GFDM) is advised as potential scheme of space-terrestrial integrated communication system. After the overview of GFDM, the implementation of GFDM transceiver is discussed respectively in time-domain and in frequency-domain. By deriving and comparing implementation complexity, GFDM modulation in time-domain is more suitable for satellite communication system. Then the properties of demodulation algorithms are specified. Based on designed pilot subcarriers, a new improved receiving algorithm is proposed in the end of the paper. The improved algorithm solves the problem of inter subcarriers interference(ICI) in matched filtering(MF) receiver and improves the re-ceiving symbol error rate(SER) obviously. The simulation and analysis prove that the proposed algorithm is effective.
基金Supported by the Natural Science Foundation of Anhui Province under Grant No.KJ2010B236
文摘By swapping the entanglement of genuine four-particle entangled states,we propose a bidirectional quantumsecure communication protocol.The biggest merit of this protocol is that the information leakage does not exist.Inaddition,the ideas of the 'two-step' transmission and the block transmission are employed in this protocol.In order toanalyze the security of the second sequence transmission,decoy states are used.
文摘This paper addresses the problem of channel estimation for broadband MIMO-OFDM systems. An improved channel estimator with multipath time delay detection and channel gain estimation is proposed. In the algorithm, we used the correlation of the channel taps and a well-designed adjustment scheme to increase the accuracy of the time delay detection. The most attractive advantage is that the complicated matrix calculation is replaced by search steps which can acquire the channel order and estimate the channel parameters without significantly increasing the complexity of the system. Computer simulation showed that the proposed algorithm can track the time delays adaptively and, consequently, improve the channel estimation performance.