提出一种基于栈式自动编码器(Stacked Auto Encoder,SAE)和长短时记忆(Long Short-Term Memory,LSTM)神经网络相结合的步态预测方法解决下肢外骨骼机器人跟随控制问题。人体在行走过程中下肢步态具有一定的周期性,通过将下肢运动信息作...提出一种基于栈式自动编码器(Stacked Auto Encoder,SAE)和长短时记忆(Long Short-Term Memory,LSTM)神经网络相结合的步态预测方法解决下肢外骨骼机器人跟随控制问题。人体在行走过程中下肢步态具有一定的周期性,通过将下肢运动信息作为输入,步态作为输出,构建SAE-LSTM神经网络模型,并利用Keras对SAE-LSTM神经网络进行搭建和验证。实验结果表明,SAE-LSTM神经网络根据之前时间段的步态序列有效地预测出下一时刻的步态信息,平均准确率能够达到92.9%以上。展开更多
Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic ...Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.展开更多
In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower...In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.展开更多
文摘提出一种基于栈式自动编码器(Stacked Auto Encoder,SAE)和长短时记忆(Long Short-Term Memory,LSTM)神经网络相结合的步态预测方法解决下肢外骨骼机器人跟随控制问题。人体在行走过程中下肢步态具有一定的周期性,通过将下肢运动信息作为输入,步态作为输出,构建SAE-LSTM神经网络模型,并利用Keras对SAE-LSTM神经网络进行搭建和验证。实验结果表明,SAE-LSTM神经网络根据之前时间段的步态序列有效地预测出下一时刻的步态信息,平均准确率能够达到92.9%以上。
基金Open Fund Project of State Key Laboratory of Large Electric Transmission Systems and Equipment Technology(No.2012AA052903)
文摘Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.
基金Project(2017YFB1301104)supported by the National Key Research and Development Program of ChinaProjects(61906212,61802426)supported by the National Natural Science Foundation of China。
文摘In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.