Based on a novel shape memory alloy (SMA) actuator, a micro worming robot is presented. The robot adopts a wheeled moving mechanism. The principle of the robot's enlarged pace is introduced, and the structure and m...Based on a novel shape memory alloy (SMA) actuator, a micro worming robot is presented. The robot adopts a wheeled moving mechanism. The principle of the robot's enlarged pace is introduced, and the structure and motion mechanism of the SMA actuator and the wheeled moving mechanism are discussed. The gait about the robot's rectilinear movement and turning movement is also planned. Under the effect of the eccentric wheel self-locking mechanisms and changing-direction mechanisms, the robot can move forward and backward, and turn actively, which overcomes the disadvantages of the traditional SMA micro robots to a certain extent. Furthermore, some experiments on the heating current of the SMA actuator and the robot's motion capability are carded out.展开更多
Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications.In reality,bipedal robots are often required to perform gait transitions...Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications.In reality,bipedal robots are often required to perform gait transitions to achieve flexible walking.In this paper,we consider the gait transition of a five-link underactuated three-dimensional(3 D)bipedal robot,and propose a two-layer control strategy.The strategy consists of a unique,event-based,feedback controller whose feedback gain in each step is updated by an adaptive control law,and a transition controller that guides the robot from the current gait to a neighboring point of the target gait so that the state trajectory can smoothly converge to the target gait.Compared with previous works,the transition controller is parameterized and its control parameters are obtained by solving an optimization problem to guarantee the physical constraints in the transition process.Finally,the effectiveness of the control strategy is illustrated on the underactuated 3 D bipedal robot.展开更多
文摘Based on a novel shape memory alloy (SMA) actuator, a micro worming robot is presented. The robot adopts a wheeled moving mechanism. The principle of the robot's enlarged pace is introduced, and the structure and motion mechanism of the SMA actuator and the wheeled moving mechanism are discussed. The gait about the robot's rectilinear movement and turning movement is also planned. Under the effect of the eccentric wheel self-locking mechanisms and changing-direction mechanisms, the robot can move forward and backward, and turn actively, which overcomes the disadvantages of the traditional SMA micro robots to a certain extent. Furthermore, some experiments on the heating current of the SMA actuator and the robot's motion capability are carded out.
基金Project supported by the National Natural Science Foundation of China(Nos.91748126,11772292,and 51521064)
文摘Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications.In reality,bipedal robots are often required to perform gait transitions to achieve flexible walking.In this paper,we consider the gait transition of a five-link underactuated three-dimensional(3 D)bipedal robot,and propose a two-layer control strategy.The strategy consists of a unique,event-based,feedback controller whose feedback gain in each step is updated by an adaptive control law,and a transition controller that guides the robot from the current gait to a neighboring point of the target gait so that the state trajectory can smoothly converge to the target gait.Compared with previous works,the transition controller is parameterized and its control parameters are obtained by solving an optimization problem to guarantee the physical constraints in the transition process.Finally,the effectiveness of the control strategy is illustrated on the underactuated 3 D bipedal robot.