行人轨迹推算(pedestrian dead reckoning,PDR)是一种无需参考基础设施的定位导航方法,由步数检测(step detection,SD)和步长估计(step length estimation,SLE)2个关键部分组成。在不同的步行模式中应用步数检测和步长估计是一个具有挑...行人轨迹推算(pedestrian dead reckoning,PDR)是一种无需参考基础设施的定位导航方法,由步数检测(step detection,SD)和步长估计(step length estimation,SLE)2个关键部分组成。在不同的步行模式中应用步数检测和步长估计是一个具有挑战性的问题。针对此问题,提出了一种基于使用智能手机的3种步行模式(即正常行走、原地踏步及快速行走)的鲁棒步数检测方法,通过基于动态时间扭曲(dynamic time warping)的结合峰值预测和过零检测方法来提高步数检测的精度。所提出的步数检测算法可以准确识别3种步行模式中每一步的起点和终点。针对不同的步行模式提出准确的步长估计模型,以提高步长估计的精度。实验结果表明,根据所提出的方法,步数检测的准确率约为97.8%,估计步行距离的误差约为4.0%,优于传统的步数检测和步长估计方法。展开更多
针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4...针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4个关键阶段.该方法在步数检测阶段融合了峰值检测算法、局部最大值算法以及提前过零检测算法;在步长推算阶段融合Weinberg方法和Kim方法,并利用卡尔曼滤波算法校正步数检测和步长推算的误差.基于不同场景从步数、步长、方向、位置误差方面与传统算法进行比较.结果表明,该组合模型结合了传统步数检测和步长推算算法的特征识别结果,可实现对步数检测、步长推算过程中信号特征的优化处理;在手持场景下,步数检测识别准确,步长推算中值误差在0.060 m以内,方向推算平均绝对误差最小为3.06°,位置推算平均误差为0.2353 m,取得较好的室内步行状态识别与定位性能.展开更多
After the declaration of the first case of Legionnaire's disease in Cameroon in 2007, the Centre Pasteur of Cameroon implemented the detection method for Legionella. The introduction of this new method was put in pla...After the declaration of the first case of Legionnaire's disease in Cameroon in 2007, the Centre Pasteur of Cameroon implemented the detection method for Legionella. The introduction of this new method was put in places in order to investigate Legionella spp. colonization of water distribution systems (WDS) of large buildings including hospitals, hotels and Off Shore Exploitations Sites (OSES) in an attempt to identify risk factors for Legionella spp. Water systems of 6 hotels, 6 hospitals and 6 ships were investigated for the presence of Legionella spp.. A total of 130 samples were collected, 77 from hotels, 27 from hospitals and 26 from ships. 51 Legionella spp. were isolated from 41 (31.54%) water samples. Of a total of 51 positive isolates, 40/51 (78.4%) were L. pneumophila with 21 (52.5%) Legionellapneumophila serogroup (sg) 1, 16 (40%) L. pneumophila sg 5, 2 (5%) L. pneumophila sg 6, 1 (2.5%) L. pneumophila sg 7 and 11/51 Legionella spp. with 10 (90%) L. anisa, 1 (10%) Legionella dumoffii. 5 L. pneumophila sg 1 were associated with 5 L. pneumophila sg 5 and 4 L. pneumophila sg 1 were associated with 4 L. anisa. These results showed that WDS of hospitals, hotels and ships can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease. Based on these preliminary results, we have just put in place a Legionella survey protocol in Cameroon.展开更多
文摘行人轨迹推算(pedestrian dead reckoning,PDR)是一种无需参考基础设施的定位导航方法,由步数检测(step detection,SD)和步长估计(step length estimation,SLE)2个关键部分组成。在不同的步行模式中应用步数检测和步长估计是一个具有挑战性的问题。针对此问题,提出了一种基于使用智能手机的3种步行模式(即正常行走、原地踏步及快速行走)的鲁棒步数检测方法,通过基于动态时间扭曲(dynamic time warping)的结合峰值预测和过零检测方法来提高步数检测的精度。所提出的步数检测算法可以准确识别3种步行模式中每一步的起点和终点。针对不同的步行模式提出准确的步长估计模型,以提高步长估计的精度。实验结果表明,根据所提出的方法,步数检测的准确率约为97.8%,估计步行距离的误差约为4.0%,优于传统的步数检测和步长估计方法。
文摘针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4个关键阶段.该方法在步数检测阶段融合了峰值检测算法、局部最大值算法以及提前过零检测算法;在步长推算阶段融合Weinberg方法和Kim方法,并利用卡尔曼滤波算法校正步数检测和步长推算的误差.基于不同场景从步数、步长、方向、位置误差方面与传统算法进行比较.结果表明,该组合模型结合了传统步数检测和步长推算算法的特征识别结果,可实现对步数检测、步长推算过程中信号特征的优化处理;在手持场景下,步数检测识别准确,步长推算中值误差在0.060 m以内,方向推算平均绝对误差最小为3.06°,位置推算平均误差为0.2353 m,取得较好的室内步行状态识别与定位性能.
文摘After the declaration of the first case of Legionnaire's disease in Cameroon in 2007, the Centre Pasteur of Cameroon implemented the detection method for Legionella. The introduction of this new method was put in places in order to investigate Legionella spp. colonization of water distribution systems (WDS) of large buildings including hospitals, hotels and Off Shore Exploitations Sites (OSES) in an attempt to identify risk factors for Legionella spp. Water systems of 6 hotels, 6 hospitals and 6 ships were investigated for the presence of Legionella spp.. A total of 130 samples were collected, 77 from hotels, 27 from hospitals and 26 from ships. 51 Legionella spp. were isolated from 41 (31.54%) water samples. Of a total of 51 positive isolates, 40/51 (78.4%) were L. pneumophila with 21 (52.5%) Legionellapneumophila serogroup (sg) 1, 16 (40%) L. pneumophila sg 5, 2 (5%) L. pneumophila sg 6, 1 (2.5%) L. pneumophila sg 7 and 11/51 Legionella spp. with 10 (90%) L. anisa, 1 (10%) Legionella dumoffii. 5 L. pneumophila sg 1 were associated with 5 L. pneumophila sg 5 and 4 L. pneumophila sg 1 were associated with 4 L. anisa. These results showed that WDS of hospitals, hotels and ships can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease. Based on these preliminary results, we have just put in place a Legionella survey protocol in Cameroon.