The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the contro...The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.展开更多
基金Project(61104106)supported by the National Natural Science Foundation of ChinaProject(201202156)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100)supported by the Program for Liaoning Excellent Talents in University(LNET),China
文摘The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.