针对基于场景的非均匀性校正算法存在非均匀性残余和鬼影等问题,本文提出了一种基于残差编解码网络的红外图像自适应算法。该算法针对自适应校正问题的特点,基于UNet结构,通过多尺度采样学习残差映射生成非均匀性残差图像,加入批标准化...针对基于场景的非均匀性校正算法存在非均匀性残余和鬼影等问题,本文提出了一种基于残差编解码网络的红外图像自适应算法。该算法针对自适应校正问题的特点,基于UNet结构,通过多尺度采样学习残差映射生成非均匀性残差图像,加入批标准化和PReLU激活函数提高校正效果,最后使用全局跳跃连接得到最终的校正结果。通过对模拟红外图像序列和真实红外图像序列校正的实验结果表明,相对于目前已有的非均匀性校正算法,该方法在PSNR(Peak Signal to Noise Ratio)和粗糙度的客观数据上都有所提升,主观视觉效果也更加清晰,细节保留程度高。展开更多
文摘针对基于场景的非均匀性校正算法存在非均匀性残余和鬼影等问题,本文提出了一种基于残差编解码网络的红外图像自适应算法。该算法针对自适应校正问题的特点,基于UNet结构,通过多尺度采样学习残差映射生成非均匀性残差图像,加入批标准化和PReLU激活函数提高校正效果,最后使用全局跳跃连接得到最终的校正结果。通过对模拟红外图像序列和真实红外图像序列校正的实验结果表明,相对于目前已有的非均匀性校正算法,该方法在PSNR(Peak Signal to Noise Ratio)和粗糙度的客观数据上都有所提升,主观视觉效果也更加清晰,细节保留程度高。