期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
乳化沥青蒸发残留物试验方法的探讨与改进 被引量:1
1
作者 覃钰 《广东建材》 2017年第2期46-48,共3页
对JTG E20-2011《公路工程沥青及沥青混合料试验规程》T0651-1993中乳化沥青试验方法的不足,提出了探讨和改进,对其设定了试验过程的判断标准,并从残留物含量、残留物性质等方面进行了验证比对。
关键词 乳化沥青 探讨与改进 蒸发残留物 残留物性质 测定 比对
下载PDF
不同蒸发温度对乳化改性沥青的性质影响 被引量:3
2
作者 王毅 杜菲 黄震 《山西建筑》 2010年第19期156-157,共2页
通过对蒸发过程中最高湿度以及蒸发模式对残留物性质的影响进行论述,研究了乳化沥青蒸发模式,进而提出了相关建议,以达到能真实反映乳化沥青路用性能的目的。
关键词 乳化沥青 残留物性质 最高蒸发温度 蒸发模式
下载PDF
SBR胶乳掺量对改性乳化沥青性能的影响 被引量:3
3
作者 王志超 吕艳艳 +1 位作者 杨国明 邹媛丽 《当代化工》 CAS 2019年第6期1186-1189,1193,共5页
考察了SBR胶乳掺量对改性乳化沥青乳化性能及蒸发残留物基本性质、流变性质的影响,并对蒸发残留物显微结构形态进行了观察。SBR的加入对改性乳化沥青乳化性能影响较小。随着SBR胶乳掺量的增大,蒸发残留物软化点升高、延度增大、针入度降... 考察了SBR胶乳掺量对改性乳化沥青乳化性能及蒸发残留物基本性质、流变性质的影响,并对蒸发残留物显微结构形态进行了观察。SBR的加入对改性乳化沥青乳化性能影响较小。随着SBR胶乳掺量的增大,蒸发残留物软化点升高、延度增大、针入度降低,通过流变分析,其高低温性能均得到改善。在显微镜下,随着掺量的增大,SBR颗粒在沥青中分布逐渐密集,掺量达到5%后,出现聚集成网状结构趋势。 展开更多
关键词 SBR胶乳 改性乳化沥青 乳化性能 残留物性质 流变分析
下载PDF
Neural Network Ensemble Residual Kriging Application for Spatial Variability of Soil Properties 被引量:37
4
作者 SHENZhang-Quan SHIJie-Bin +2 位作者 WANGKe KONGFan-Sheng J.S.BAILEY 《Pedosphere》 SCIE CAS CSCD 2004年第3期289-296,共8页
High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the c... High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area. 展开更多
关键词 KRIGING neural networks ensemble RESIDUAL soil properties SPATIALVARIABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部