The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map o...The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.展开更多
Based on the concept of melt residual bonds, a calculating model quantitatively describing the evolution of the residual bond structure of titanium melt at the melting point or in a certain range above the melting poi...Based on the concept of melt residual bonds, a calculating model quantitatively describing the evolution of the residual bond structure of titanium melt at the melting point or in a certain range above the melting point was established; i.e., both the size ds and the bond number n of the residual bond structure decrease monotonously with the increase of temperature. By mathe- matical deduction, a linear relationship between the residual bond structure size ds and the dynamic viscosity 17 of Titanium melt was revealed, i.e., η= 0.876 + 0.471·ds, which is of great significance to the investigation of the relationship between the melt microstructure and the macroscopic properties of metals with high melting temperature.展开更多
基金Project(35061107)supported by the Doctoral Initiation Project of Jiangsu University of Science and Technology,China
文摘The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.
基金supported by the National Basic Research Program of China (Grant Nos. 2007CB613803 and 2007CB613702)
文摘Based on the concept of melt residual bonds, a calculating model quantitatively describing the evolution of the residual bond structure of titanium melt at the melting point or in a certain range above the melting point was established; i.e., both the size ds and the bond number n of the residual bond structure decrease monotonously with the increase of temperature. By mathe- matical deduction, a linear relationship between the residual bond structure size ds and the dynamic viscosity 17 of Titanium melt was revealed, i.e., η= 0.876 + 0.471·ds, which is of great significance to the investigation of the relationship between the melt microstructure and the macroscopic properties of metals with high melting temperature.