期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于切尔诺夫界的泊松试验和的尾部概率估计及其应用 被引量:1
1
作者 陈齐根 《重庆科技学院学报(自然科学版)》 CAS 2013年第4期156-159,共4页
由随机变量的矩母函数导出切尔诺夫界,得到泊松试验和的切尔诺夫界的几种形式。利用切尔诺夫界的优良性质,进行泊松试验和的尾部概率估计。
关键词 母矩函数 切尔诺夫界 泊松试验 尾部概率
下载PDF
A General Representation of Hankel Matrix about Bell Numbers 被引量:2
2
作者 刘麦学 张海模 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第4期338-342,共5页
The purpose of this note is to establish a general representation of Hankel matrices of Bell numbers and the convoluted Bell numbers. As a special case, the results of Aigner are extended.
关键词 Bell number Hankel matrix matrix multiplication RECURRENCE
下载PDF
Statistical Properties of The Exponentiated Nakagami Distribution
3
作者 Adepoju K.A Chukwu A.U and Shittu, O.I 《Journal of Mathematics and System Science》 2014年第3期180-185,共6页
This paper is an improvement over beta-Nakagami distribution developed by Shittu and Adepoju (2013). Here we propose the addition of one parameter to the two parameter continuous Nakagami-m distribution (Nakagami, ... This paper is an improvement over beta-Nakagami distribution developed by Shittu and Adepoju (2013). Here we propose the addition of one parameter to the two parameter continuous Nakagami-m distribution (Nakagami, 1960) that was designed for modeling the fading of radio signals. The resulting distribution referred to as Exponentiated Nakagami (ENAK) distribution is a generalization of the classical Nakagami distribution. The statistical properties of the proposed distribution such as moments, moment generating function, the asymptotic behavior among others were investigated. The method of maximum likelihood is used to estimate the model parameters and the observed information matrix is derived. A real data set is used to compare the new model with the class of Nakagami distributions. Our findings showed that the Exponentiated Nakagami distribution is more flexible than beta-Nakagami distribution with better representation and less computational effort. 展开更多
关键词 NAKAGAMI exponentiated Nakagami Beta-Nakagami moments moment generating function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部