According to tectonic position and mineral inclusions, supply resource in western Qaidamu basin is di- vided into the front of Aerjinshan mountain and the front of Qimantageshan mountain. The former is mainly composed...According to tectonic position and mineral inclusions, supply resource in western Qaidamu basin is di- vided into the front of Aerjinshan mountain and the front of Qimantageshan mountain. The former is mainly composed of zircon, garnet inclusions, indicating that its mother rocks are mainly metamorphic rocks. Gas and zircon, iron ore, carbon grain inclusions is common in the front of Qimantage mountain, indicating that its mother rock are mainly magmatite and mixed metamorphic rocks. The supply resource is abundant and tectonic movement is active in the joint of the two mountains. The western Qaidamu basin is further divided into 6 heavy mineral sub-regions according to their features of association and stable coefficient of heavy mineral. They are approximately corresponding to their sedimentary environment. Of the 6 sub-regions, the unstable region is corresponding to fluvial fan, middle stable re- gion is corresponding to river-alluvial plain-delta, stable region is corresponding to river-alluvial plain -delta-offshore. The fragment transported distance is presumed based on stable coefficient. In vertical, stable coefficient of heavy min- eral becomes small from Xiaganchai formation to Xiayoushashan formation, indicating that the supply resource be- came nearer and nearer.展开更多
The relationship between magnetic properties and particle size of soils derived from metamorphic rock, basalt, granite, Quaternary red clay, limestone and mudstone from Zhejiang Province, East China was studied. Based...The relationship between magnetic properties and particle size of soils derived from metamorphic rock, basalt, granite, Quaternary red clay, limestone and mudstone from Zhejiang Province, East China was studied. Based on the variations of the mass magnetic susceptibility (X), anhysteretic remanent magnetization (ARM), and saturation isothermal remanent magnetization (SIRM) with soil particle size, the relationship could be classified into three groups. For the soils derived from metamorphic rock and basalt, magnetic values were the highest in the gravel and coarse sand fractions and decreased with decreasing soil particle size. The soils derived from sedimentary rock had a bimodal distribution of magnetic values, with peaks in 1-0.5 and 0.005-0.000 5 mm fractions. The soil developed on granite was characterized by a peak of magnetic value in 0.001-0.000 5 mm fractions. Frequency-dependent susceptibility (Xfd ) and ratics of magnetic parameters (ARM/X, SIRM/X and SIRM/ARM) of soil particle fractions showed that variations in ferrimagnetic grain size paralleled those in particle size. Xfd peaked in clay fraction and decreased with increasing particle size, irrespective of soil parent materials. The acquisition curves of IRM and demagnetization parameter of different soil particles indicated that there were different magnetic minerals assemblages in different particle fractions.展开更多
The Qilishan gold deposit is located in the southern Zhaolai gold ore belt in the northwestern Jiaodong region.A total of seven gold ore bodies have been found in the mining area.Linglong gneissic biotite granite and ...The Qilishan gold deposit is located in the southern Zhaolai gold ore belt in the northwestern Jiaodong region.A total of seven gold ore bodies have been found in the mining area.Linglong gneissic biotite granite and the NE trending Lingbei fracture control the output and distribution of the gold deposit.The ore bodies with veined or irregular shape occur in the structural alteration zone.The ore bodies of different sizes are NE trending and SE dipping.The constituent minerals of the ores mainly include pyrite,chalcopyrite,native gold,electrum,argentite,matildite,hematite,quartz and calcite.The ores are characterized by metasomatic dissolution structure,as well as veined and brecciated structures.The ore-forming process is divided into four stages,namely quartz-,pyrite-,polymetallic-and carbonate stages.Study on fluid inclusion shows that the deposit is composed of gas-liquid two-phase inclusions (Ⅰ) and three-phase inclusions containing CO2 (Ⅱ),and that the former dominates.The homogenization temperature is 259.6℃-373.7℃ ; the salinity of three-phase inclusions containing CO2is 5.77%-9.84% (NaCl) ; the salinity of gas-liquid two-phase inclusions is 6.58%-8.54% (NaCl) ; and the estimated ore-forming pressure is 55.2-82.2 MPa.According to the nonlinear relationship between the depth and pressure of the fluid in the fracture zone,the ore-forming depth of the Qilishan gold deposit is calculated as 5.95-7.14 km.It is preliminarily determined that the deposit is a mesophilic and hypothermal gold deposit.展开更多
The Nanling and adjacent regions of South China host a series of tin deposits related to Mesozoic granites with diverse petrological characteristics. The rocks are amphibole-bearing biotite granites, or (topaz-) alb...The Nanling and adjacent regions of South China host a series of tin deposits related to Mesozoic granites with diverse petrological characteristics. The rocks are amphibole-bearing biotite granites, or (topaz-) albite-lepidolite (zinnwaldite) granites, and geochemically correspond to mealuminous and peraluminous types, respectively. Mineralogical studies demonstrate highly distinctive and critical patterns for each type of granites. In mealuminous tin granites amphibole, biotite and perthite are the typical rock-forming mineral association; titanite and magnetite are typical accessory minerals, indicating highjO2 magmatic conditions; cassiterite, biotite and titanite are the principal Sn-bearing minerals; and pure cassiterite has low trace-element contents. However, in peraluminous tin granites zirmwaldite-lepidolite, K-feldspar and albite are typical rock-forming minerals; topaz is a common accessory phase, indicative of high peraluminity of this type of granites; cassiterite is present as a uniquely important tin mineral, typically rich in Nb and Ta. Mineralogical distinction between the two types of tin granites is largely controlled by redox state, volatile content and differentiation of magmatic melts. In oxidized metaluminous granitic melts, Sn4+ is readily concentrated in Ti-bearing rock-forming and accessory minerals. Such Sn-bearing minerals are typical of oxidized tin granites, and are enriched in granites at the late fractionation stage. In relatively reduced peraluminous granitic melts, Sn2+ is not readily incorporated into rock-forming and accessory minerals, except for cassiterite at fractionation stage of granite magma, which serves as an indicator of tin mineralization associated with this type of granites. The nature of magma and the geochemical behavior of tin in the two types of granites thus result in the formation of different types of tin deposits. Metaluminous granites host disseminated tin mineralization, and are locally related to deposits of the chlorite quartz-vein, greisen, and skarn types. Greisen, skarn, and quartz-vein tin deposits can occur related to peraluminous granites, but disseminated mineralization of cassiterite is more typical.展开更多
基金System in research area Project/OF4534 supported by CUMT Science Foundation
文摘According to tectonic position and mineral inclusions, supply resource in western Qaidamu basin is di- vided into the front of Aerjinshan mountain and the front of Qimantageshan mountain. The former is mainly composed of zircon, garnet inclusions, indicating that its mother rocks are mainly metamorphic rocks. Gas and zircon, iron ore, carbon grain inclusions is common in the front of Qimantage mountain, indicating that its mother rock are mainly magmatite and mixed metamorphic rocks. The supply resource is abundant and tectonic movement is active in the joint of the two mountains. The western Qaidamu basin is further divided into 6 heavy mineral sub-regions according to their features of association and stable coefficient of heavy mineral. They are approximately corresponding to their sedimentary environment. Of the 6 sub-regions, the unstable region is corresponding to fluvial fan, middle stable re- gion is corresponding to river-alluvial plain-delta, stable region is corresponding to river-alluvial plain -delta-offshore. The fragment transported distance is presumed based on stable coefficient. In vertical, stable coefficient of heavy min- eral becomes small from Xiaganchai formation to Xiayoushashan formation, indicating that the supply resource be- came nearer and nearer.
基金Project (No. 49971044 and No. 49301010) supported by the National Natural Science Foundation of China.
文摘The relationship between magnetic properties and particle size of soils derived from metamorphic rock, basalt, granite, Quaternary red clay, limestone and mudstone from Zhejiang Province, East China was studied. Based on the variations of the mass magnetic susceptibility (X), anhysteretic remanent magnetization (ARM), and saturation isothermal remanent magnetization (SIRM) with soil particle size, the relationship could be classified into three groups. For the soils derived from metamorphic rock and basalt, magnetic values were the highest in the gravel and coarse sand fractions and decreased with decreasing soil particle size. The soils derived from sedimentary rock had a bimodal distribution of magnetic values, with peaks in 1-0.5 and 0.005-0.000 5 mm fractions. The soil developed on granite was characterized by a peak of magnetic value in 0.001-0.000 5 mm fractions. Frequency-dependent susceptibility (Xfd ) and ratics of magnetic parameters (ARM/X, SIRM/X and SIRM/ARM) of soil particle fractions showed that variations in ferrimagnetic grain size paralleled those in particle size. Xfd peaked in clay fraction and decreased with increasing particle size, irrespective of soil parent materials. The acquisition curves of IRM and demagnetization parameter of different soil particles indicated that there were different magnetic minerals assemblages in different particle fractions.
基金Supported by Project of Alternative Resources Prospecting in Crisis Mines(No.200623018)
文摘The Qilishan gold deposit is located in the southern Zhaolai gold ore belt in the northwestern Jiaodong region.A total of seven gold ore bodies have been found in the mining area.Linglong gneissic biotite granite and the NE trending Lingbei fracture control the output and distribution of the gold deposit.The ore bodies with veined or irregular shape occur in the structural alteration zone.The ore bodies of different sizes are NE trending and SE dipping.The constituent minerals of the ores mainly include pyrite,chalcopyrite,native gold,electrum,argentite,matildite,hematite,quartz and calcite.The ores are characterized by metasomatic dissolution structure,as well as veined and brecciated structures.The ore-forming process is divided into four stages,namely quartz-,pyrite-,polymetallic-and carbonate stages.Study on fluid inclusion shows that the deposit is composed of gas-liquid two-phase inclusions (Ⅰ) and three-phase inclusions containing CO2 (Ⅱ),and that the former dominates.The homogenization temperature is 259.6℃-373.7℃ ; the salinity of three-phase inclusions containing CO2is 5.77%-9.84% (NaCl) ; the salinity of gas-liquid two-phase inclusions is 6.58%-8.54% (NaCl) ; and the estimated ore-forming pressure is 55.2-82.2 MPa.According to the nonlinear relationship between the depth and pressure of the fluid in the fracture zone,the ore-forming depth of the Qilishan gold deposit is calculated as 5.95-7.14 km.It is preliminarily determined that the deposit is a mesophilic and hypothermal gold deposit.
基金supported by the National Natural Science Foundation of China(Grant No.41230315)the National Key R&D Program of China(Grant No.2016YFC0600203)the Fundamental Research Funds for the Central Universities(Grant No.020614380057).
文摘The Nanling and adjacent regions of South China host a series of tin deposits related to Mesozoic granites with diverse petrological characteristics. The rocks are amphibole-bearing biotite granites, or (topaz-) albite-lepidolite (zinnwaldite) granites, and geochemically correspond to mealuminous and peraluminous types, respectively. Mineralogical studies demonstrate highly distinctive and critical patterns for each type of granites. In mealuminous tin granites amphibole, biotite and perthite are the typical rock-forming mineral association; titanite and magnetite are typical accessory minerals, indicating highjO2 magmatic conditions; cassiterite, biotite and titanite are the principal Sn-bearing minerals; and pure cassiterite has low trace-element contents. However, in peraluminous tin granites zirmwaldite-lepidolite, K-feldspar and albite are typical rock-forming minerals; topaz is a common accessory phase, indicative of high peraluminity of this type of granites; cassiterite is present as a uniquely important tin mineral, typically rich in Nb and Ta. Mineralogical distinction between the two types of tin granites is largely controlled by redox state, volatile content and differentiation of magmatic melts. In oxidized metaluminous granitic melts, Sn4+ is readily concentrated in Ti-bearing rock-forming and accessory minerals. Such Sn-bearing minerals are typical of oxidized tin granites, and are enriched in granites at the late fractionation stage. In relatively reduced peraluminous granitic melts, Sn2+ is not readily incorporated into rock-forming and accessory minerals, except for cassiterite at fractionation stage of granite magma, which serves as an indicator of tin mineralization associated with this type of granites. The nature of magma and the geochemical behavior of tin in the two types of granites thus result in the formation of different types of tin deposits. Metaluminous granites host disseminated tin mineralization, and are locally related to deposits of the chlorite quartz-vein, greisen, and skarn types. Greisen, skarn, and quartz-vein tin deposits can occur related to peraluminous granites, but disseminated mineralization of cassiterite is more typical.