[Objective] The aim was to research high-yielding cultivation and fertilization technology for Lvhan No.l, a new Chinese rice cultivar, in Angola. [Method] In rainy season of 2012, high-yielding cultivation and fertil...[Objective] The aim was to research high-yielding cultivation and fertilization technology for Lvhan No.l, a new Chinese rice cultivar, in Angola. [Method] In rainy season of 2012, high-yielding cultivation and fertilization technology of Lvhan No.l, a new cultivar of earlier ripe and drought resistant rice, was researched in CATETE farm of Luanda suburb with pot experiment method. [Result] In CATETE farm, Lvhan No.1 rice were directly sown in black clay and the rice can be significantly improved in plant height, grain weight of single plant, biological yield of single plant, ear length, total grain number per ear, number of filled grain per ear and thousand seed weight, as well as economic coefficient and ratio of grain to straw, if applied with base fertilizer made up of DAP (N:P2Os=14:43), or compound fertilizer of N, P and K (N:P2Os:K^O=15:15:15) and with Duannai fertilizer and ear-grain fertilizer made up of urea. If DAP is taken as base fertilizer, the optimal quantity is 300 kg/hm2. If compound fertilizer of N, P and K is taken as base fertilizer, the optimal quantity is 450 kg/hm2, but urea at 75 kg/hm2 should be applied as Duannai fertilizer and ear- grain fertilizer, respectively, on time. [Conclusion] The research provides technical ref- erences for planting of Chinese rice cultivars in Angola.展开更多
The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were e...The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were extracted and analyzed during the granulation and storage process. The results show that the contents of protein and EPS increase along with the granulation process, while polysaccharides remain almost unchanged. The content of protein in EPS is almost two-fold larger than that of polysaccharides in granular sludge cultivated with municipal wastewater. Moreover, some of the granules disintegrate during storage, corresponding to the decrease of protein contents in EPS. Three peaks are identified in three-dimensional excitation emission matrix (EEM) fluorescence spectra of the EPS in the aerobic granules. Two peaks (A and B) are attributed to the protein-like fluorophores, and the third (peak C) is related to visible fulvic-like substances. Peak A gradually disappears during storage, while a new peak related to ultraviolet fulvic acid (peak D) is formed. The formation and the stability of aerobic granules are closely dependent on the quantity and composition of EPS proteins. Peak C has no obvious changes during granulation, while the fulvic-like substances present an increase in fluorescence intensities during storage, accompanied with an increase in structural complexity. The fulvie-like substances are also associated with the disintegration of the aerobic granules.展开更多
基金Supported by International Cooperation Program of Anhui Provincial Science&Technology Department(11030603031)~~
文摘[Objective] The aim was to research high-yielding cultivation and fertilization technology for Lvhan No.l, a new Chinese rice cultivar, in Angola. [Method] In rainy season of 2012, high-yielding cultivation and fertilization technology of Lvhan No.l, a new cultivar of earlier ripe and drought resistant rice, was researched in CATETE farm of Luanda suburb with pot experiment method. [Result] In CATETE farm, Lvhan No.1 rice were directly sown in black clay and the rice can be significantly improved in plant height, grain weight of single plant, biological yield of single plant, ear length, total grain number per ear, number of filled grain per ear and thousand seed weight, as well as economic coefficient and ratio of grain to straw, if applied with base fertilizer made up of DAP (N:P2Os=14:43), or compound fertilizer of N, P and K (N:P2Os:K^O=15:15:15) and with Duannai fertilizer and ear-grain fertilizer made up of urea. If DAP is taken as base fertilizer, the optimal quantity is 300 kg/hm2. If compound fertilizer of N, P and K is taken as base fertilizer, the optimal quantity is 450 kg/hm2, but urea at 75 kg/hm2 should be applied as Duannai fertilizer and ear- grain fertilizer, respectively, on time. [Conclusion] The research provides technical ref- erences for planting of Chinese rice cultivars in Angola.
基金Project(2006AA06Z318) supported by the National High-Tech Research and Development Program of China
文摘The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were extracted and analyzed during the granulation and storage process. The results show that the contents of protein and EPS increase along with the granulation process, while polysaccharides remain almost unchanged. The content of protein in EPS is almost two-fold larger than that of polysaccharides in granular sludge cultivated with municipal wastewater. Moreover, some of the granules disintegrate during storage, corresponding to the decrease of protein contents in EPS. Three peaks are identified in three-dimensional excitation emission matrix (EEM) fluorescence spectra of the EPS in the aerobic granules. Two peaks (A and B) are attributed to the protein-like fluorophores, and the third (peak C) is related to visible fulvic-like substances. Peak A gradually disappears during storage, while a new peak related to ultraviolet fulvic acid (peak D) is formed. The formation and the stability of aerobic granules are closely dependent on the quantity and composition of EPS proteins. Peak C has no obvious changes during granulation, while the fulvic-like substances present an increase in fluorescence intensities during storage, accompanied with an increase in structural complexity. The fulvie-like substances are also associated with the disintegration of the aerobic granules.