This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonicati...This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonication significantly reduces the toxicity of water. Sonication with 5 W/L at 90 kHz lasting for 30 rain decreases the water SUVA and the disinfection byproduct formation potential (DBPFP) by 38.7% and 27. 2% respectively. Sonication also decreases the UV254 by more than 50% through destroying unsaturated chemical bonds. Higher sound intensity and higher frequency benefit the reduction of TOC and UV254. Besides, sonication significantly increases the affinity of organics with granular activated carbon ( GAC ) , and thus the hybrid sonication-GAC method reduces the water TOC, COD, UV254, and DBPFP by 78.3%, 69.4%, 75.7%, and 70.0% respectively. Therefore, sonication and the hybrid sonication-GAC metbod are proposed as advanced treatment methods for drinking water.展开更多
Orthogonal method was adopted to optimize the preozonation process and to minimize the bromate formation. Factors such as contact time, pH and ammonia concentration were investigated by orthogonal experiments to under...Orthogonal method was adopted to optimize the preozonation process and to minimize the bromate formation. Factors such as contact time, pH and ammonia concentration were investigated by orthogonal experiments to understand the interaction of various operation conditions on the formation of bromate and other disinfection byproducts(DBPs). Results showed that pH had the most significant influence on the minimization of bromate formation. The factors influencing the formation of bromate were in order of pH > contact time > ammonia concentration. For the formation of trihalomethanes(THMs) and haloacetic acids(HAAs), however, contact time significantly influenced their formation potential. In the practical preozonation process of waterworks, it is appropriate to set preozonation contact time to be 20 min. In order to minimize the formation of bromate, pH value of the raw water should be adjusted to 6. 0, and a certain concentration of ammonia could be added into the water to strengthen the minimization effect when the concentration of bromide in the raw water is higher than that in the experimental water.展开更多
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2007AA06Z339)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2006AA06Z306)
文摘This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonication significantly reduces the toxicity of water. Sonication with 5 W/L at 90 kHz lasting for 30 rain decreases the water SUVA and the disinfection byproduct formation potential (DBPFP) by 38.7% and 27. 2% respectively. Sonication also decreases the UV254 by more than 50% through destroying unsaturated chemical bonds. Higher sound intensity and higher frequency benefit the reduction of TOC and UV254. Besides, sonication significantly increases the affinity of organics with granular activated carbon ( GAC ) , and thus the hybrid sonication-GAC method reduces the water TOC, COD, UV254, and DBPFP by 78.3%, 69.4%, 75.7%, and 70.0% respectively. Therefore, sonication and the hybrid sonication-GAC metbod are proposed as advanced treatment methods for drinking water.
基金Supported by the National Natural Science Foundation of China(No.51008162)Natural Science Foundation of Tianjin(No.10JCYBJC03500)
文摘Orthogonal method was adopted to optimize the preozonation process and to minimize the bromate formation. Factors such as contact time, pH and ammonia concentration were investigated by orthogonal experiments to understand the interaction of various operation conditions on the formation of bromate and other disinfection byproducts(DBPs). Results showed that pH had the most significant influence on the minimization of bromate formation. The factors influencing the formation of bromate were in order of pH > contact time > ammonia concentration. For the formation of trihalomethanes(THMs) and haloacetic acids(HAAs), however, contact time significantly influenced their formation potential. In the practical preozonation process of waterworks, it is appropriate to set preozonation contact time to be 20 min. In order to minimize the formation of bromate, pH value of the raw water should be adjusted to 6. 0, and a certain concentration of ammonia could be added into the water to strengthen the minimization effect when the concentration of bromide in the raw water is higher than that in the experimental water.