Virulence of seedvax (amicarthiazol), saikuzuo (bismerthiazol) and carboxin to Xanthomonas citri、X. oryzae pv. oryzae、X.campestris pv. glycines and Rhizoctonia cerealis were determined , and the relation of their ac...Virulence of seedvax (amicarthiazol), saikuzuo (bismerthiazol) and carboxin to Xanthomonas citri、X. oryzae pv. oryzae、X.campestris pv. glycines and Rhizoctonia cerealis were determined , and the relation of their activity with their composition were analysised , Furthermore, their effects on growth, respiration and fungiactive mode to X. citri were taken into investigation . The results indicated that virulence mechanism of seedvax is interrelated to that of saikuzuo and carboxin , seedvax possibly attack any targets of the respiration pathway and other unknown bio chemical sites, seedvax is characterized with poly active location when transported in bio metabolic ways.展开更多
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 t...Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.展开更多
As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array ...As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efficacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Specifically, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surfing, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.展开更多
Stress granules(SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved i...Stress granules(SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B(CVB)infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3(CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.展开更多
文摘Virulence of seedvax (amicarthiazol), saikuzuo (bismerthiazol) and carboxin to Xanthomonas citri、X. oryzae pv. oryzae、X.campestris pv. glycines and Rhizoctonia cerealis were determined , and the relation of their activity with their composition were analysised , Furthermore, their effects on growth, respiration and fungiactive mode to X. citri were taken into investigation . The results indicated that virulence mechanism of seedvax is interrelated to that of saikuzuo and carboxin , seedvax possibly attack any targets of the respiration pathway and other unknown bio chemical sites, seedvax is characterized with poly active location when transported in bio metabolic ways.
基金National Natural Science Foundation of China (30979144 and 81271821)
文摘Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.
基金supported by US Public Health Service grant 1R01MH102144 from NIMH to Y. W
文摘As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efficacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Specifically, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surfing, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.
基金supported by the Natural Science Foundation of China(Grant 81571999 to Z Zhong81672007 to W Zhao+1 种基金81772188 to Y Wang,31300144 to T Wang)support from Heilongjiang Provincial Key Laboratory of Pathogens and Immunity and Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity of Harbin Medical University
文摘Stress granules(SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B(CVB)infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3(CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.