目的:采用网络药理学方法探索四逆汤配伍环境下,甘草、干姜对附子作用基因"效-毒网络"交集调控的机制。方法:应用Cytoscape软件和插件Agilent Literature Search,进行文本挖掘并建立附子、甘草、干姜作用的基因相互关系网络;...目的:采用网络药理学方法探索四逆汤配伍环境下,甘草、干姜对附子作用基因"效-毒网络"交集调控的机制。方法:应用Cytoscape软件和插件Agilent Literature Search,进行文本挖掘并建立附子、甘草、干姜作用的基因相互关系网络;根据附子抗心衰、神经毒性和心脏毒性形成附子"效-毒网络"交集;应用插件Clusterviz进行靶标基因聚类,从DAVID数据库中对甘草、干姜调控附子"效-毒网络"交集的可能通路进行预测。结果:与附子神经毒性、心脏毒性和抗心衰作用同时相关的基因有5个,AKT1,BAX,HCC,IL6,IL8,形成附子"效-毒网络"交集有47个节点基因;甘草、干姜与附子"效-毒网络"交集的重合基因分别有29个和27个,可能调控通路有23条和17条。结论:在四逆汤配伍环境下,甘草、干姜可能通过影响免疫-炎症反应信号通路、细胞凋亡-自噬信号通路、神经细胞与心肌细胞缺血缺氧保护信号通路等途径调控附子的效/毒效应。展开更多
Objective To investigate the underlying drug enhancement mechanisms of the Chuanwu(Aconiti Radix)and Huangqi(Astragali Radix)combination and toxicity reduction of Chuan-wu combined with Gancao(Glycyrrhizae Radix et Rh...Objective To investigate the underlying drug enhancement mechanisms of the Chuanwu(Aconiti Radix)and Huangqi(Astragali Radix)combination and toxicity reduction of Chuan-wu combined with Gancao(Glycyrrhizae Radix et Rhizoma)in Wutou Decoction(乌头汤,WTD),and to elucidate the compatibility principle.Methods The active compounds and potential effective targets of the selected combinations were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and Traditional Chinese Medicines Integrated Database(TCMID).The toxicity of Chuanwu(Aconiti Radix)was investigated by selecting all five toxic compounds from the literature and the TCMSP database,and obtaining their targets through SwissTargetPrediction.Targets related to rheumatoid arthritis(RA)were searched using Dis-GeNET,GenCards,and Online Mendelian Inheritance in Man(OMIM).Mutual targets between the drug pairs and RA were selected as potential RA therapy targets.The medicinally active compound-target network was constructed using Cytoscape 3.9.0.Gene ontology(GO)term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrich-ment were performed using the Database for Annotation,Visualization,and Integrated Dis-covery(DAVID)platform.Results We obtained 191 active compound targets for Gancao(Glycyrrhizae Radix et Rhizoma),171 for Huangqi(Astragali Radix),and 103 for Chuanwu(Radix Aconiti)(hypo-aconitine’s target was obtained through literature and SwissTargetPrediction).A total of 5872 genes were obtained for RA.A drug-active compound-target network involving 13 effect-en-hancing and nine toxicity reduction targets was constructed.PGR was the main effect en-hancement target,and KCNH2 was the main toxicity reduction target.The effect-enhancing targets were related to 23 GO terms(such as positive regulation of transcription from RNA polymerase II promoter,steroid hormone-mediated signaling pathway,plasma membrane,and protein binding)(P<0.01),and 13 KEGG pathways related to synergism[such as estro-gen signaling pathway,cholinergic synapse,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway].The toxicity reduction targets were related to 28 GO terms(mainly involes G-protein coupled receptor signaling pathway,plasma membrane,and drug binding)(P<0.01),and five KEGG pathways related to toxicity reduction(cholinergic syn-apse,calcium signaling pathway,regulation of actin cytoskeleton,neuroactive ligand-recept-or interaction,and serotonergic synapse).Conclusion The combination of Chuanwu(Aconiti Radix)and Huangqi(Astragali Radix)plays an important effect-enhancing role in WTD and involves the estrogen and PI3K/Akt sig-naling pathways,with PGR as the core.The Chuanwu(Aconiti Radix)and Gancao(Gly-cyrrhizae Radix et Rhizoma)combination decreases toxicity in WTD and is associated with the cholinergic synapse and calcium signaling pathways,with KCNH2 as the core.展开更多
文摘目的:采用网络药理学方法探索四逆汤配伍环境下,甘草、干姜对附子作用基因"效-毒网络"交集调控的机制。方法:应用Cytoscape软件和插件Agilent Literature Search,进行文本挖掘并建立附子、甘草、干姜作用的基因相互关系网络;根据附子抗心衰、神经毒性和心脏毒性形成附子"效-毒网络"交集;应用插件Clusterviz进行靶标基因聚类,从DAVID数据库中对甘草、干姜调控附子"效-毒网络"交集的可能通路进行预测。结果:与附子神经毒性、心脏毒性和抗心衰作用同时相关的基因有5个,AKT1,BAX,HCC,IL6,IL8,形成附子"效-毒网络"交集有47个节点基因;甘草、干姜与附子"效-毒网络"交集的重合基因分别有29个和27个,可能调控通路有23条和17条。结论:在四逆汤配伍环境下,甘草、干姜可能通过影响免疫-炎症反应信号通路、细胞凋亡-自噬信号通路、神经细胞与心肌细胞缺血缺氧保护信号通路等途径调控附子的效/毒效应。
基金Macao Science and Technology Development Fund(0003/2019/AKP and 0010/2020/A1)Guangdong Basic and Applied Basic Research Foundation(2020B1515130005)+1 种基金Guangdong-Hong Kong-Macao Joint Lab on Chinese Medicine and Immune Disease Research,Guangzhou University of Chinese Medicine(2020B1212030006)supported by a grant from the“Macao Young Scholars Program”(AM2020017).
文摘Objective To investigate the underlying drug enhancement mechanisms of the Chuanwu(Aconiti Radix)and Huangqi(Astragali Radix)combination and toxicity reduction of Chuan-wu combined with Gancao(Glycyrrhizae Radix et Rhizoma)in Wutou Decoction(乌头汤,WTD),and to elucidate the compatibility principle.Methods The active compounds and potential effective targets of the selected combinations were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and Traditional Chinese Medicines Integrated Database(TCMID).The toxicity of Chuanwu(Aconiti Radix)was investigated by selecting all five toxic compounds from the literature and the TCMSP database,and obtaining their targets through SwissTargetPrediction.Targets related to rheumatoid arthritis(RA)were searched using Dis-GeNET,GenCards,and Online Mendelian Inheritance in Man(OMIM).Mutual targets between the drug pairs and RA were selected as potential RA therapy targets.The medicinally active compound-target network was constructed using Cytoscape 3.9.0.Gene ontology(GO)term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrich-ment were performed using the Database for Annotation,Visualization,and Integrated Dis-covery(DAVID)platform.Results We obtained 191 active compound targets for Gancao(Glycyrrhizae Radix et Rhizoma),171 for Huangqi(Astragali Radix),and 103 for Chuanwu(Radix Aconiti)(hypo-aconitine’s target was obtained through literature and SwissTargetPrediction).A total of 5872 genes were obtained for RA.A drug-active compound-target network involving 13 effect-en-hancing and nine toxicity reduction targets was constructed.PGR was the main effect en-hancement target,and KCNH2 was the main toxicity reduction target.The effect-enhancing targets were related to 23 GO terms(such as positive regulation of transcription from RNA polymerase II promoter,steroid hormone-mediated signaling pathway,plasma membrane,and protein binding)(P<0.01),and 13 KEGG pathways related to synergism[such as estro-gen signaling pathway,cholinergic synapse,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway].The toxicity reduction targets were related to 28 GO terms(mainly involes G-protein coupled receptor signaling pathway,plasma membrane,and drug binding)(P<0.01),and five KEGG pathways related to toxicity reduction(cholinergic syn-apse,calcium signaling pathway,regulation of actin cytoskeleton,neuroactive ligand-recept-or interaction,and serotonergic synapse).Conclusion The combination of Chuanwu(Aconiti Radix)and Huangqi(Astragali Radix)plays an important effect-enhancing role in WTD and involves the estrogen and PI3K/Akt sig-naling pathways,with PGR as the core.The Chuanwu(Aconiti Radix)and Gancao(Gly-cyrrhizae Radix et Rhizoma)combination decreases toxicity in WTD and is associated with the cholinergic synapse and calcium signaling pathways,with KCNH2 as the core.