The concentration of suspended solids in the secondary effluent often varies widely, leading to frequent adjustment of the UV dosage to meet the disinfection criterion. In addition, a desired disinfection rate is diff...The concentration of suspended solids in the secondary effluent often varies widely, leading to frequent adjustment of the UV dosage to meet the disinfection criterion. In addition, a desired disinfection rate is difficult to achieve sometimes. The authors studied the particle size distribution, contribution of particle-associated Fecal Coliform (F.C.), and their influences on UV disinfection. A combined disinfection process (chlorination with a subsequent UV disinfection) was tested to improve the disinfection effect. The results indicated that the content of suspended solids, especially that of large particles, has a strong impact on UV disinfection efficiency; D>10 μm particles associated F.C. are difficult to be disinfected and are the main part of the tailings of F.C. inactivation curves. Pre-chlorination could decrease the number of particles in the secondary effluent and transform the large particles into small ones, reducing the influence of particles on UV disinfection and enhancing the resistance ability of the combined process to particle loading.展开更多
This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonicati...This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonication significantly reduces the toxicity of water. Sonication with 5 W/L at 90 kHz lasting for 30 rain decreases the water SUVA and the disinfection byproduct formation potential (DBPFP) by 38.7% and 27. 2% respectively. Sonication also decreases the UV254 by more than 50% through destroying unsaturated chemical bonds. Higher sound intensity and higher frequency benefit the reduction of TOC and UV254. Besides, sonication significantly increases the affinity of organics with granular activated carbon ( GAC ) , and thus the hybrid sonication-GAC method reduces the water TOC, COD, UV254, and DBPFP by 78.3%, 69.4%, 75.7%, and 70.0% respectively. Therefore, sonication and the hybrid sonication-GAC metbod are proposed as advanced treatment methods for drinking water.展开更多
文摘The concentration of suspended solids in the secondary effluent often varies widely, leading to frequent adjustment of the UV dosage to meet the disinfection criterion. In addition, a desired disinfection rate is difficult to achieve sometimes. The authors studied the particle size distribution, contribution of particle-associated Fecal Coliform (F.C.), and their influences on UV disinfection. A combined disinfection process (chlorination with a subsequent UV disinfection) was tested to improve the disinfection effect. The results indicated that the content of suspended solids, especially that of large particles, has a strong impact on UV disinfection efficiency; D>10 μm particles associated F.C. are difficult to be disinfected and are the main part of the tailings of F.C. inactivation curves. Pre-chlorination could decrease the number of particles in the secondary effluent and transform the large particles into small ones, reducing the influence of particles on UV disinfection and enhancing the resistance ability of the combined process to particle loading.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2007AA06Z339)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2006AA06Z306)
文摘This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonication significantly reduces the toxicity of water. Sonication with 5 W/L at 90 kHz lasting for 30 rain decreases the water SUVA and the disinfection byproduct formation potential (DBPFP) by 38.7% and 27. 2% respectively. Sonication also decreases the UV254 by more than 50% through destroying unsaturated chemical bonds. Higher sound intensity and higher frequency benefit the reduction of TOC and UV254. Besides, sonication significantly increases the affinity of organics with granular activated carbon ( GAC ) , and thus the hybrid sonication-GAC method reduces the water TOC, COD, UV254, and DBPFP by 78.3%, 69.4%, 75.7%, and 70.0% respectively. Therefore, sonication and the hybrid sonication-GAC metbod are proposed as advanced treatment methods for drinking water.