A great variety of dairy products with different flavour, texture and health-promoting properties can be obtained from milk using different technologies and starter cultures. Fermented milks are consumed in many parts...A great variety of dairy products with different flavour, texture and health-promoting properties can be obtained from milk using different technologies and starter cultures. Fermented milks are consumed in many parts of the world and are relished for their acidic taste and health benefits. The aim of this study was to compare effects of different ratios of DL-type starter culture: mould Geotrichum candidum grown in milk on its viscosity and sensory properties on the 5th, 10th and 15th day of storage at 4 ~C~ in order to determine the best ratio to prepare fermented milk on basis of Iranian acceptance. We have examined the production of fermented milk by 80: 20, 70: 30, and 60:40 ratios of DL-type starter culture: mould Geotrichum candidum grown in milk. The results obtained from viscosity measurement and sensory evaluation showed no significant difference between these treatments used in the study and were not satisfactory; their viscosity was not accepted and scores attributed to odour and flavor of fermented milks by panelists were low.展开更多
The determination of collapse margin ratio(CMR)of structure is influenced by many uncertain factors.Some factors that can affect the calculation of CMR,e.g.,the elongation of the structural fundamental period prior to...The determination of collapse margin ratio(CMR)of structure is influenced by many uncertain factors.Some factors that can affect the calculation of CMR,e.g.,the elongation of the structural fundamental period prior to collapse,the determination of earthquake intensity measure,the seismic hazard probability,and the difference of the spectral shapes between the median spectrum of the ground motions and the design spectrum,were discussed.Considering the elongation of the structural fundamental period,the intensity measure Sa(T1)should be replaced with *aS in the calculation of CMR for short-period and medium-period structures.The reasonable intensity measure should be determined by the correlation analysis between the earthquake intensity measure and the damage index of the structure.Otherwise,CMR should be adjusted according to the seismic hazard probability and the difference in the spectral shapes.For important long-period structures,CMR should be determined by the special site spectrum.The results indicate that both Sa(T1)and spectrum intensity(SI)could be used as intensity measures in the calculation of CMR for medium-period structures,but SI would be a better choice for long-period structures.Moreover,an adjusted CMR that reflects the actual seismic collapse safety of structures is provided.展开更多
Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forci...Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, F and β, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F ≠ 0 there exists a well-defined point transformation to set β = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F ≠ 0 and β = 0. Based upon this classification, distinct classes of group-invariant solutions are obtained and extended to the case β ≠0.展开更多
This paper presents studies of aeroelastic optimization on composite skins of large aircraft wings subject to aeroelastic constraints and strength/strain constraints. The design variable for optimization was the ply t...This paper presents studies of aeroelastic optimization on composite skins of large aircraft wings subject to aeroelastic constraints and strength/strain constraints. The design variable for optimization was the ply thickness of the wing skin panels, and the structural weight was the objective function to be minimised. The impacts of three strength/strain constraints and the ply proportion of the wing skin panels on the optimization results are discussed. The results indicate that the optimal composite wings that satisfy different constraints have remarkable weight advantages over metal wing. High levels of stiffness can be achieved while satisfying the constraints regarding allowable design strains and failure criteria. The optimization results with variable-proportions indicate that wing skins with higher proportions of 0° plies from the root to the middle segment and ±45° plies outboard have a more efficient and reasonable stiffness distribution.展开更多
To evaluate the influence of the ZnO buffer layer and A1 proportion on the properties of ZnO: A1 (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporati...To evaluate the influence of the ZnO buffer layer and A1 proportion on the properties of ZnO: A1 (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation. The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness. The electrical properties of the films are investigated. The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness. However, the resistivity reaches the lowest at about 50 nm-thick buffer layer. The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% Al concentration. But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with A1 concentration lower than 5 wt% in the visible region.展开更多
文摘A great variety of dairy products with different flavour, texture and health-promoting properties can be obtained from milk using different technologies and starter cultures. Fermented milks are consumed in many parts of the world and are relished for their acidic taste and health benefits. The aim of this study was to compare effects of different ratios of DL-type starter culture: mould Geotrichum candidum grown in milk on its viscosity and sensory properties on the 5th, 10th and 15th day of storage at 4 ~C~ in order to determine the best ratio to prepare fermented milk on basis of Iranian acceptance. We have examined the production of fermented milk by 80: 20, 70: 30, and 60:40 ratios of DL-type starter culture: mould Geotrichum candidum grown in milk. The results obtained from viscosity measurement and sensory evaluation showed no significant difference between these treatments used in the study and were not satisfactory; their viscosity was not accepted and scores attributed to odour and flavor of fermented milks by panelists were low.
基金Projects(51161120359,90915005)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0096)supported by the Program for New Century Excellent Talents in University of the Ministry of China
文摘The determination of collapse margin ratio(CMR)of structure is influenced by many uncertain factors.Some factors that can affect the calculation of CMR,e.g.,the elongation of the structural fundamental period prior to collapse,the determination of earthquake intensity measure,the seismic hazard probability,and the difference of the spectral shapes between the median spectrum of the ground motions and the design spectrum,were discussed.Considering the elongation of the structural fundamental period,the intensity measure Sa(T1)should be replaced with *aS in the calculation of CMR for short-period and medium-period structures.The reasonable intensity measure should be determined by the correlation analysis between the earthquake intensity measure and the damage index of the structure.Otherwise,CMR should be adjusted according to the seismic hazard probability and the difference in the spectral shapes.For important long-period structures,CMR should be determined by the special site spectrum.The results indicate that both Sa(T1)and spectrum intensity(SI)could be used as intensity measures in the calculation of CMR for medium-period structures,but SI would be a better choice for long-period structures.Moreover,an adjusted CMR that reflects the actual seismic collapse safety of structures is provided.
基金supported by the Austrian Science Fund (FWF),project P20632
文摘Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, F and β, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F ≠ 0 there exists a well-defined point transformation to set β = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F ≠ 0 and β = 0. Based upon this classification, distinct classes of group-invariant solutions are obtained and extended to the case β ≠0.
文摘This paper presents studies of aeroelastic optimization on composite skins of large aircraft wings subject to aeroelastic constraints and strength/strain constraints. The design variable for optimization was the ply thickness of the wing skin panels, and the structural weight was the objective function to be minimised. The impacts of three strength/strain constraints and the ply proportion of the wing skin panels on the optimization results are discussed. The results indicate that the optimal composite wings that satisfy different constraints have remarkable weight advantages over metal wing. High levels of stiffness can be achieved while satisfying the constraints regarding allowable design strains and failure criteria. The optimization results with variable-proportions indicate that wing skins with higher proportions of 0° plies from the root to the middle segment and ±45° plies outboard have a more efficient and reasonable stiffness distribution.
基金supported by the Foundation of Zhejiang Educational Committee (No.Z201018276)
文摘To evaluate the influence of the ZnO buffer layer and A1 proportion on the properties of ZnO: A1 (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation. The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness. The electrical properties of the films are investigated. The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness. However, the resistivity reaches the lowest at about 50 nm-thick buffer layer. The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% Al concentration. But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with A1 concentration lower than 5 wt% in the visible region.