引入了一种求解波导本征值问题的高效而精确算法-比例边界有限元方法SBFEM(Scaled Boundary Finite Element Method)。该方法的一个特点是只需在边界上进行离散,问题降低一维,使计算工作量大大减少;另一特点是所建立的控制方程为二阶常...引入了一种求解波导本征值问题的高效而精确算法-比例边界有限元方法SBFEM(Scaled Boundary Finite Element Method)。该方法的一个特点是只需在边界上进行离散,问题降低一维,使计算工作量大大减少;另一特点是所建立的控制方程为二阶常微分方程,可以解析地求解,使计算精度得到了保证。论文利用变分原理并通过比例边界坐标变换,推导了TE波和TM波波导的比例边界有限元频域方程以及波导动刚度方程,同时给出了波导动刚度矩阵的连分式解形式,通过引入辅助变量进一步得出波导特征值方程并求出波导本征值。以矩形、L形波导和叶型加载矩形波导的本征问题分析为例,通过与解析解及其他数值方法比较,结果表明,此方法具有精度高、计算工作量小的优点,而且随着连分式阶数增加收敛速度快。进一步分析了一类角切四脊正方形波导的传输特性。展开更多
文摘引入了一种求解波导本征值问题的高效而精确算法-比例边界有限元方法SBFEM(Scaled Boundary Finite Element Method)。该方法的一个特点是只需在边界上进行离散,问题降低一维,使计算工作量大大减少;另一特点是所建立的控制方程为二阶常微分方程,可以解析地求解,使计算精度得到了保证。论文利用变分原理并通过比例边界坐标变换,推导了TE波和TM波波导的比例边界有限元频域方程以及波导动刚度方程,同时给出了波导动刚度矩阵的连分式解形式,通过引入辅助变量进一步得出波导特征值方程并求出波导本征值。以矩形、L形波导和叶型加载矩形波导的本征问题分析为例,通过与解析解及其他数值方法比较,结果表明,此方法具有精度高、计算工作量小的优点,而且随着连分式阶数增加收敛速度快。进一步分析了一类角切四脊正方形波导的传输特性。