比值判别法,设正项级数sum from n=1 to ∞ U_n之后项与前项的比值的极限等于ι,即(i)当ι【1时,级数sum from n=1 to ∞ U_n收敛;(ii)当ι】1时,级数sum from n=1 to ∞ U_n发散;(iii)当ι=1时,级数可能收敛也可能发散,所以当ι=1时此...比值判别法,设正项级数sum from n=1 to ∞ U_n之后项与前项的比值的极限等于ι,即(i)当ι【1时,级数sum from n=1 to ∞ U_n收敛;(ii)当ι】1时,级数sum from n=1 to ∞ U_n发散;(iii)当ι=1时,级数可能收敛也可能发散,所以当ι=1时此法失效,为了使比值判别法得到进一步推广,经过初步探讨,当ι=1时,如果正项级数的项单调递减,可以采用下面两种比式形式得到解决.展开更多
比值审敛法解决的是正项级数sum from a=1 to ∞(n_a)的敛、散问题。对任意项级数。比值法无能为力。但任意项级数sum from a=1 to ∞(n_a)的敛、散性,依赖于sum from a=1 to (|n_a|)。即正项级数的敛、散性。对此,有两种情况:第一,若su...比值审敛法解决的是正项级数sum from a=1 to ∞(n_a)的敛、散问题。对任意项级数。比值法无能为力。但任意项级数sum from a=1 to ∞(n_a)的敛、散性,依赖于sum from a=1 to (|n_a|)。即正项级数的敛、散性。对此,有两种情况:第一,若sum from a=1 to ∞(|n_a|)收敛。则sum from a=1 to ∞(n_a)绝对敛。第二,若sum from a=1 to ∞(|n_a|)发散,则sum from a=1 to ∞(n_a)可能收敛,也可能发散。即对后者,sum from a=1 to ∞(n_a)敛、散性书上没有定论。但通过实践,我们发现,若sum from a=1 to ∞(|n_a|)的发散性是由比值法判断而得,则sum from a=1 to ∞(n_a)一定也发散。展开更多
文摘比值判别法,设正项级数sum from n=1 to ∞ U_n之后项与前项的比值的极限等于ι,即(i)当ι【1时,级数sum from n=1 to ∞ U_n收敛;(ii)当ι】1时,级数sum from n=1 to ∞ U_n发散;(iii)当ι=1时,级数可能收敛也可能发散,所以当ι=1时此法失效,为了使比值判别法得到进一步推广,经过初步探讨,当ι=1时,如果正项级数的项单调递减,可以采用下面两种比式形式得到解决.
文摘比值审敛法解决的是正项级数sum from a=1 to ∞(n_a)的敛、散问题。对任意项级数。比值法无能为力。但任意项级数sum from a=1 to ∞(n_a)的敛、散性,依赖于sum from a=1 to (|n_a|)。即正项级数的敛、散性。对此,有两种情况:第一,若sum from a=1 to ∞(|n_a|)收敛。则sum from a=1 to ∞(n_a)绝对敛。第二,若sum from a=1 to ∞(|n_a|)发散,则sum from a=1 to ∞(n_a)可能收敛,也可能发散。即对后者,sum from a=1 to ∞(n_a)敛、散性书上没有定论。但通过实践,我们发现,若sum from a=1 to ∞(|n_a|)的发散性是由比值法判断而得,则sum from a=1 to ∞(n_a)一定也发散。