Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution...Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution (PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios (0%, 15%, 30%, 45%, 60% and 90%), slope lengths (2 m, 4 m), fertilizer treatments (unfertilized control (CK), compound N-P-K fertilizer (CF), and organic fertilizer (OF)) on SOC loss and the SOC enrichment ratio (ERsoc) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more clay- sized particles (〈2 μm) and silt-sized particles (2-50μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERsoc 〉 1. ERsoc was positively correlated with ERclay (〈2 pro) (R^2 = o.68) and ERie at (2-20 μm) (R2 = 0.63), and from all the size particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized partieles (〈50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized part-ides and fine silt-sized particles, thus we eonelude that as the eroded sediment partieles became finer, more SOC was absorbed, resulting in more severe SOC loss.展开更多
Effects of current density, duty cycle and frequency on microstructure and particles content of electrodeposited Co-BN (hexagonal) nano composite coatings were analyzed by SEM, FESEM, EDS, AFM and XRD techniques. Th...Effects of current density, duty cycle and frequency on microstructure and particles content of electrodeposited Co-BN (hexagonal) nano composite coatings were analyzed by SEM, FESEM, EDS, AFM and XRD techniques. The microhardness, tribological behavior and wear mechanism were also investigated. Generally, as the current density and frequency increased, the particles content and microhardness of the coatings increased firstly and then decreased. Moreover, by reducing duty cycle, more particles were incorporated and higher microhardness was obtained. The best tribological behavior was achieved under the conditions duty cycle of 10%, frequency of 50 Hz and current density of 100 mA/cm2.展开更多
Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from...Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .展开更多
The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacte...The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacted and consolidate under the geostatic stress and overburden stress. It is one of the key areas with land subsidence disasters in China, bringing a series of safety hazards to production and living. Based on the data of massive surface cores and ten drill holes ranging from 12 to 40 m obtained from the northern modern Yellow River subaqueous delta, the inversion method suitable for the calculation of consolidation settlement characteristics of the modern Yellow River subaqueous delta is discussed, and the consolidation settlement characteristics of the delta sediments are inversed and predicted in this paper. The actual void ratio of the delta sediments at the depth from 3 to 15 m shows a significant power function relationship with the depth, while the void ratio of the sediments below 15 m changes little with depth. The pre-consolidation settlement(from deposition to sampling) of the delta sediments is between 0.91 and 1.96 m, while the consolidation settlement of unit depth is between 9.6 and 14.0 cm m^(-1). The post-consolidation settlement(from sampling to stable) of the subaqueous delta sediments is between 0.65 and 1.56 m in the later stage, and the consolidation settlement of unit depth is between 7.6 and 13.1 cm m^(-1) under the overburden stress. The delta sediments with a buried depth of 3 to 7 m contribute the most to the possible consolidation settlement in the later stage.展开更多
A high-frequency and precise ultrasonic sounder was used to monitor precipitated/deposited and drift snow events over a 3-year period(17 January 2005 to 4 January 2008) at the Eagle automatic weather station site,inla...A high-frequency and precise ultrasonic sounder was used to monitor precipitated/deposited and drift snow events over a 3-year period(17 January 2005 to 4 January 2008) at the Eagle automatic weather station site,inland Antarctica.Ion species and oxygen isotope ratios were also generated from a snow pit below the sensor.These accumulation and snowdrift events were used to examine the synchronism with seasonal variations of δ^(18)O and ion species,providing an opportunity to assess the snowdrift effect in typical Antarctic inland conditions.There were up to 1-year differences for this 3-year-long snow pit between the traditional dating method and ultrasonic records.This difference implies that in areas with low accumulation or high wind,the snowdrift effect can induce abnormal disturbances on snow deposition.The snowdrift effect should be seriously taken into account for high-resolution dating of ice cores and estimation of surface mass balance,especially when the morphology of most Antarctic inland areas is similar to that of the Eagle site.展开更多
基金funded by Water and Soil Conservation Monitoring Technology Innovation Team and Construction of China(Grant No.2009F20022)National Natural Science Foundation of China(Grant No.41471221)
文摘Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution (PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios (0%, 15%, 30%, 45%, 60% and 90%), slope lengths (2 m, 4 m), fertilizer treatments (unfertilized control (CK), compound N-P-K fertilizer (CF), and organic fertilizer (OF)) on SOC loss and the SOC enrichment ratio (ERsoc) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more clay- sized particles (〈2 μm) and silt-sized particles (2-50μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERsoc 〉 1. ERsoc was positively correlated with ERclay (〈2 pro) (R^2 = o.68) and ERie at (2-20 μm) (R2 = 0.63), and from all the size particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized partieles (〈50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized part-ides and fine silt-sized particles, thus we eonelude that as the eroded sediment partieles became finer, more SOC was absorbed, resulting in more severe SOC loss.
文摘Effects of current density, duty cycle and frequency on microstructure and particles content of electrodeposited Co-BN (hexagonal) nano composite coatings were analyzed by SEM, FESEM, EDS, AFM and XRD techniques. The microhardness, tribological behavior and wear mechanism were also investigated. Generally, as the current density and frequency increased, the particles content and microhardness of the coatings increased firstly and then decreased. Moreover, by reducing duty cycle, more particles were incorporated and higher microhardness was obtained. The best tribological behavior was achieved under the conditions duty cycle of 10%, frequency of 50 Hz and current density of 100 mA/cm2.
基金Project supported by the One Hundred Talents Program of Chinese Academy of Sciences
文摘Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .
基金financially supported by the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology (No. MGQNLM-KF20 1715)the National Natural Science Foundation of ChinaShandong Joint Fund for Marine Science Research Centers (No. U1606401)+1 种基金the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes (No. 2015G08)the National Science Foundation for Young Scientists of China (No. 41206054)
文摘The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacted and consolidate under the geostatic stress and overburden stress. It is one of the key areas with land subsidence disasters in China, bringing a series of safety hazards to production and living. Based on the data of massive surface cores and ten drill holes ranging from 12 to 40 m obtained from the northern modern Yellow River subaqueous delta, the inversion method suitable for the calculation of consolidation settlement characteristics of the modern Yellow River subaqueous delta is discussed, and the consolidation settlement characteristics of the delta sediments are inversed and predicted in this paper. The actual void ratio of the delta sediments at the depth from 3 to 15 m shows a significant power function relationship with the depth, while the void ratio of the sediments below 15 m changes little with depth. The pre-consolidation settlement(from deposition to sampling) of the delta sediments is between 0.91 and 1.96 m, while the consolidation settlement of unit depth is between 9.6 and 14.0 cm m^(-1). The post-consolidation settlement(from sampling to stable) of the subaqueous delta sediments is between 0.65 and 1.56 m in the later stage, and the consolidation settlement of unit depth is between 7.6 and 13.1 cm m^(-1) under the overburden stress. The delta sediments with a buried depth of 3 to 7 m contribute the most to the possible consolidation settlement in the later stage.
基金supported by the National Basic Research Program of China(Grant No. 2013CBA01804)the National Natural Science Foundation of China(Grant Nos.41425003 & 41601070)+1 种基金the State Oceanic Administration of the People s Republic of China Project on Climate in Polar Regions(Grant No. CHINARE2016-2020)Climate Change Estimation Program by China Meteorological Administration(Grant No.CCSF201332)
文摘A high-frequency and precise ultrasonic sounder was used to monitor precipitated/deposited and drift snow events over a 3-year period(17 January 2005 to 4 January 2008) at the Eagle automatic weather station site,inland Antarctica.Ion species and oxygen isotope ratios were also generated from a snow pit below the sensor.These accumulation and snowdrift events were used to examine the synchronism with seasonal variations of δ^(18)O and ion species,providing an opportunity to assess the snowdrift effect in typical Antarctic inland conditions.There were up to 1-year differences for this 3-year-long snow pit between the traditional dating method and ultrasonic records.This difference implies that in areas with low accumulation or high wind,the snowdrift effect can induce abnormal disturbances on snow deposition.The snowdrift effect should be seriously taken into account for high-resolution dating of ice cores and estimation of surface mass balance,especially when the morphology of most Antarctic inland areas is similar to that of the Eagle site.