In data post-processing for quantum key distribution, it is essential to have a highly efficient error reconciliation protocol. Based on the key redistribution scheme, we analyze a one-way error reconciliation protoco...In data post-processing for quantum key distribution, it is essential to have a highly efficient error reconciliation protocol. Based on the key redistribution scheme, we analyze a one-way error reconciliation protocol by data simulation. The relationship between the error correction capability and the key generation efficiency of three kinds of Hamming code are demonstrated. The simulation results indicate that when the initial error rates are (0,1.5%], (1.5,4%], and (4,11%], using the Hamming (31,26), (15,11), and (7,4) codes to correct the error, respectively, the key generation rate will be maximized. Based on this, we propose a modified one-way error reconciliation protocol which employs a mixed Hamming code concatenation scheme. The error correction capability and key generation rate are verified through data simulation. Using the parameters of the posterior distribution based on the tested data, a simple method for estimating the bit error rate (BER) with a given confidence interval is estimated. The simulation results show that when the initial bit error rate is 10.00%, after 7 rounds of error correction, the error bits are eliminated completely, and the key generation rate is 10.36%; the BER expectation is 2.96×10^-10, and when the confidence is 95% the corresponding BER upper limit is 2.17×10^-9. By comparison, for the single (7,4) Hamming code error reconciliation scheme at a confidence of 95%,the key generation rate is only 6.09%, while the BER expectation is 5.92x 10"9, with a BER upper limit of 4.34×10^-8. Hence, our improved protocol is much better than the original one.展开更多
Telecom-band polarization-entangled photon- pair source has been widely used in quantum communi- cation due to its acceptable transmission loss. It is also used in cooperation with wavelength-division multiplexing (...Telecom-band polarization-entangled photon- pair source has been widely used in quantum communi- cation due to its acceptable transmission loss. It is also used in cooperation with wavelength-division multiplexing (WDM) to construct entanglement distributor. However, previous schemes generally are not suitable for multinode scenario. In this paper, we construct a telecom-band po- larization-entangled photon-pair source, and it shows ul- trahigh fidelity and concurrence which are both greater than 90 % (raw data). Moreover, we set up a four-by-four entanglement distributor based on WDM. We check the 16 Clauser-Horne-Shimony-Holt inequalities, which show nonlocality. Lastly, as an example of practical application of this source, we estimate the quantum bit error rates and quantum secret key rates when it is used in quantum key distribution. Furthermore, the transmission of entanglement in long optical fibers is also demonstrated.展开更多
Considering the air-water interface and ocean water’s optical attenuation,the performance of quantum key distribution(QKD)based on air-water channel is studied.The effects of photons’various incident angles to air-w...Considering the air-water interface and ocean water’s optical attenuation,the performance of quantum key distribution(QKD)based on air-water channel is studied.The effects of photons’various incident angles to air-water interface on quantum bit error rate(QBER)and the maximum secure transmission distance are analyzed.Taking the optical attenuation of ocean water into account,the performance bounds of QKD in different types of ocean water are discussed.The simulation results show that the maximum secure transmission distance of QKD gradually reduces as the incident angle from air to ocean water increases.In the clearest ocean water with the lowest attenuation,the maximum secure transmission distance of photons far exceeds the the working depth of underwater vehicles.In intermediate and murky ocean waters with higher attenuation,the secure transmission distance shortens,but the underwater vehicle can deploy other accessorial methods for QKD with perfect security.So the implementation of OKD between the satellite and the underwater vehicle is feasible.展开更多
基金supported in part by the Foundation for Key Program of Chinese Ministry of Education under Grant No.212177Scientific Research Foundation of the Education Department of Shaanxi Province under Grant No.12JK0973
文摘In data post-processing for quantum key distribution, it is essential to have a highly efficient error reconciliation protocol. Based on the key redistribution scheme, we analyze a one-way error reconciliation protocol by data simulation. The relationship between the error correction capability and the key generation efficiency of three kinds of Hamming code are demonstrated. The simulation results indicate that when the initial error rates are (0,1.5%], (1.5,4%], and (4,11%], using the Hamming (31,26), (15,11), and (7,4) codes to correct the error, respectively, the key generation rate will be maximized. Based on this, we propose a modified one-way error reconciliation protocol which employs a mixed Hamming code concatenation scheme. The error correction capability and key generation rate are verified through data simulation. Using the parameters of the posterior distribution based on the tested data, a simple method for estimating the bit error rate (BER) with a given confidence interval is estimated. The simulation results show that when the initial bit error rate is 10.00%, after 7 rounds of error correction, the error bits are eliminated completely, and the key generation rate is 10.36%; the BER expectation is 2.96×10^-10, and when the confidence is 95% the corresponding BER upper limit is 2.17×10^-9. By comparison, for the single (7,4) Hamming code error reconciliation scheme at a confidence of 95%,the key generation rate is only 6.09%, while the BER expectation is 5.92x 10"9, with a BER upper limit of 4.34×10^-8. Hence, our improved protocol is much better than the original one.
基金This work was supported by the National Nat- ural Science Foundation of China (61327901, 61490711, 11274289, 11325419, 11374288 and 11104261), the National Basic Research Program of China (2011CB921200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB01030300), the National Science Ftmd for Distinguished Young Scholars (61225025), and the Fundamental Research Funds for Central Universities (WK2470000011).
文摘Telecom-band polarization-entangled photon- pair source has been widely used in quantum communi- cation due to its acceptable transmission loss. It is also used in cooperation with wavelength-division multiplexing (WDM) to construct entanglement distributor. However, previous schemes generally are not suitable for multinode scenario. In this paper, we construct a telecom-band po- larization-entangled photon-pair source, and it shows ul- trahigh fidelity and concurrence which are both greater than 90 % (raw data). Moreover, we set up a four-by-four entanglement distributor based on WDM. We check the 16 Clauser-Horne-Shimony-Holt inequalities, which show nonlocality. Lastly, as an example of practical application of this source, we estimate the quantum bit error rates and quantum secret key rates when it is used in quantum key distribution. Furthermore, the transmission of entanglement in long optical fibers is also demonstrated.
基金supported by the National High Technology Research and Development Program of China(No.2011AA7014061)
文摘Considering the air-water interface and ocean water’s optical attenuation,the performance of quantum key distribution(QKD)based on air-water channel is studied.The effects of photons’various incident angles to air-water interface on quantum bit error rate(QBER)and the maximum secure transmission distance are analyzed.Taking the optical attenuation of ocean water into account,the performance bounds of QKD in different types of ocean water are discussed.The simulation results show that the maximum secure transmission distance of QKD gradually reduces as the incident angle from air to ocean water increases.In the clearest ocean water with the lowest attenuation,the maximum secure transmission distance of photons far exceeds the the working depth of underwater vehicles.In intermediate and murky ocean waters with higher attenuation,the secure transmission distance shortens,but the underwater vehicle can deploy other accessorial methods for QKD with perfect security.So the implementation of OKD between the satellite and the underwater vehicle is feasible.