Elovicb, two-constant, parabolic diffusion, exponential, second-order, first-order and zero-order equations were used to describe the kinetic characteristics of potassium desorption from six paddy soils df Zhejiang Pr...Elovicb, two-constant, parabolic diffusion, exponential, second-order, first-order and zero-order equations were used to describe the kinetic characteristics of potassium desorption from six paddy soils df Zhejiang Province in a constant electric field (44.4 V/ cm) of EUF. Results showed that the second-order and Elovich equations could describe the potassium desorption kinetics best, as evidenced by the highest correlation coefficients (r) and the lowest standard errors (SE). The first-order, two-constant and parabolic diffusion equations also described the K desorption kinetics well, as showed by the relatively high correlation coefficients and relatively low standard errors. The zero-order equation did not describe the K desorption satisfactorily with a relatively low correlation coefficient and relatively high standard error. However, the exponential equation could not be used to describe the K desorption kinetics, due to the lowest correlation coefficient and the highest standard error.展开更多
文摘Elovicb, two-constant, parabolic diffusion, exponential, second-order, first-order and zero-order equations were used to describe the kinetic characteristics of potassium desorption from six paddy soils df Zhejiang Province in a constant electric field (44.4 V/ cm) of EUF. Results showed that the second-order and Elovich equations could describe the potassium desorption kinetics best, as evidenced by the highest correlation coefficients (r) and the lowest standard errors (SE). The first-order, two-constant and parabolic diffusion equations also described the K desorption kinetics well, as showed by the relatively high correlation coefficients and relatively low standard errors. The zero-order equation did not describe the K desorption satisfactorily with a relatively low correlation coefficient and relatively high standard error. However, the exponential equation could not be used to describe the K desorption kinetics, due to the lowest correlation coefficient and the highest standard error.