[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was ...[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was amplified by PCR and inserted into the secreted expression vector pPIC9K to get recombinant plasmid. The recombinant plasmid pPIC9K-sarr~ was integrated into Pichia pastoris GSl15 genome by electroporation and induced by methanol. The activity of the recombinant enzyme was measured using high-pedormance liquid chroma- tography (HPLC) by determining the production of S-adenosy-L-methionine (SAM) with the enzyme secreted. [ ResultJ The molecular weight of the expression protein identified by SDS-PAGE was about 50 kD, being larger than the theoretical molecular mass of SAMS, which might be due to the glycosytation in the process of secretion. Methanol-induction as well as preliminary purification could enhance the enzyme activity, espe- cially the latter, after which the specific activity of SAMS was improved to 61.48 U/rng. [Conclusion] SAMS with biological activity was secreted successfully in Pichia pastoris GSl15 for the first time. And it is the start for the genetic engineering strains to open up prospects for industrial production.展开更多
[Objective] This study aimed to investigate the secretory expression of P97R1 gene of Mycoplasma hyopneumoniae(Mhp) in Pichia pastoris expression system and the primary application; of the expression product. [Metho...[Objective] This study aimed to investigate the secretory expression of P97R1 gene of Mycoplasma hyopneumoniae(Mhp) in Pichia pastoris expression system and the primary application; of the expression product. [Method] A pair of specific primers was designed to conduct PCR according to the Mhp P97R1 gene sequence in Genbank, and the amplified P97R1 gene was cloned into the pPICZa-A yeast expression vector to construct the secretory recombinant expression vector pPICZa-A-P97R1. The plasmid pPICZa-A-p97R1 linearized by Sac I was transformed into P. pastoris GSl15 by electroporation. Positive transformant identified by PCR was incubated to express P97R1 protein after methanol induction. And the expression product was identified using SDS-PAGE and Western-blotting anal.wsis. [Result] P97R1 protein was successfully expressed in the P. pastoris system, with a secre- tory amount of 499μg/ml, and revealed good reactogenicity. Meanwhile, an indirect ELISA method was established with P97R1 protein after the optimization of each reaction factor, which showed good specificity and repeatability according to repeated tests. [Conclusion] This study provides bases for developing the ELISA Kit for anti- body detection and genetically engineered vaccine to Mhp.展开更多
ln this study, effects of UV irradiation and 60Co-γ irradiation on fermenta-tion of xylose to ethanol by Pichia stipitis were analyzed to investigate the optimal mutagenic conditions. According to the growth curve an...ln this study, effects of UV irradiation and 60Co-γ irradiation on fermenta-tion of xylose to ethanol by Pichia stipitis were analyzed to investigate the optimal mutagenic conditions. According to the growth curve and fermentation curve of P. stipi-tis, the optimal incubation duration and fermentation duration of P. stipitis mutant strain were 18 and 48 h, respectively. The cel concentration of original yeast liquid was 107 cel s/ml. After mutagenesis by UV irradiation and 60Co-γ irradiation, yeast liquid was incubated in 20 g/L xylose media for 48 h. According to the results, after UV irradiation for 45-75 s, transformation efficiency reached 0.3794 g/g, which was 74.39% of the theoretical value; after irradiation with 800-1 000 Gy 60Co-γ, transforma-tion efficiency reached 0.3165 g/g, which was 62.06% of the theoretical value. Therefore, both UV irradiation and 60Co-γ irradiation could improve the efficiency of xylose fermentation to ethanol by P. stipitis under appropriate conditions.展开更多
[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector ...[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector pPIC9K containing AOXl promoter and the sequences of secreting α-signal peptides. Recombinant plasmid was linearized by Sal l and transformed into P. pastoris GSl15 competent cells by electroporation. Positive integrated clones were screened out, and the At2G34450 protein was expressed under the induction of methanol. [Result] The At2G34450 protein was expressed in yeast medium through methanol induction. SDS-PAGE results showed that recombination product was At2G34450 protein. [Conclusion] At2G34450 protein was successfully expressed in the P. pastoris system for the first time, which paves a direct path to further research on the functions of HMGB family members.展开更多
[Objective] This study aimed to investigate the expression of exogenous gene in prokaryotes and eukaryotes. [Method] The expression vector pTYB2-WF harboring target gene was transformed into E. coli ER2566. IPTG was ...[Objective] This study aimed to investigate the expression of exogenous gene in prokaryotes and eukaryotes. [Method] The expression vector pTYB2-WF harboring target gene was transformed into E. coli ER2566. IPTG was employed to induce the expression of phytase gene. The expression of phytase fusion protein was detected by SDS-PAGE, and the fusion protein was further purified. Phytase gene phyA was expressed in Pichia pastoris expression system. Yeast recombinant vector pPIC9K-phyA was constructed and transformed into P. pastoris GS115 to construct engineering strain GS115-pPIC9K-phyA. [Result] Phytase protein was ex-pressed under methanol induction. Enzyme activity assay indicated that the activity of phytase was 7.3 U/ml. P. pastoris engineering strain GS115-pPIC9K-phyA was successful y constructed. [Conclusion] Methanol yeast expression mechanisms play a certain role in molecular biology and industrial applications.展开更多
Aim To induce and express the T4 lysozyme in Pichia pastoris and test the antibacterial activity of the protein. Methods T4 lysozyme gene was inserted into expression vector pPIC9K of Pichia pastoris with the fusion a...Aim To induce and express the T4 lysozyme in Pichia pastoris and test the antibacterial activity of the protein. Methods T4 lysozyme gene was inserted into expression vector pPIC9K of Pichia pastoris with the fusion at N terminal. The recombinant plasmid was digested by Sal I and then introduced into prepared GS115 competent cells by electroporation. Positive clone and multiple inserts were screened. The secreted proteins in the supernatants were tested. In the agar holes diffusion assay, our expressed protein showed significant antibacterial circles. Results T4 lysozyme protein inhibited the growth of staphylococcus aureus and streptococcus Pneumoniae. There was no difference in the bactericidal activity and the amount of protein expression between the single and multiple copies. The antibacterial activity of expressed protein remained the same during the heat stability test. Conclusion T4 lysozyme was successfully induced and expressed in Pichia pastoris. There is no relationship between copy number and expression. T4 lysozyme protein is heat stable.展开更多
The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts...The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.展开更多
High-level expression ofβ-mannanase has been reported in Pichia pastoris under control of the GAP promoter.Two factors that strongly influence protein production and fermentation process development in Pichia pastori...High-level expression ofβ-mannanase has been reported in Pichia pastoris under control of the GAP promoter.Two factors that strongly influence protein production and fermentation process development in Pichia pastoris protein expression system are gene dosage and cultivation temperature.The aim of this research was to improve the expression level ofβ-mannanase in Pichia pastoris by proper increasing the gene dosage and decreasing the culture temperature.To this end,a panel of strains harboring different copy numbers ofβ-mannanase gene were obtained by multiple zeocin concentration gradients screening,the influence of gene copy number on the expression ofβ-mannanase in Pichia pastoris X33 was investigated.With the constitutive GAP promoter,the four copies strain exhibited a 4.04-fold higherβ-mannanase yield and a 1.83-fold higher total secretion proteins than the one copy strain,but an increase of the copy number above four resulted in a decrease of expression.Furthermore,the effects of culture temperature were studied in flask.The decreased culture temperature of four copies strain resulted in a 1.8-fold(26℃)and 3.5-fold(22℃)higherβ-mannanase activity compared to that at 30℃.A fed-batch strategy was successfully used for high cell-density fermentation andβ-mannanase activity reached 2124 U/mL after cultivation for 72 h in a 5 L fermenter.展开更多
In order to improve the extracellular endo-1,4-β-mannosidase(MAN) activity of recombinant Pichia pastoris, optimization of signal peptides was investigated. At first, five potential signal peptides(W1, MF4 I, INU1 A,...In order to improve the extracellular endo-1,4-β-mannosidase(MAN) activity of recombinant Pichia pastoris, optimization of signal peptides was investigated. At first, five potential signal peptides(W1, MF4 I, INU1 A, αpre, HFBI) were chosen to be analyzed by Signal P 4.0, among which W1 was designed. Then, the widely used signal peptide α-factor in expression vector p GAPZαA was replaced by those five signal peptides to reconstruct five new expression vectors. MAN activity was assayed after expression vectors were transformed into Pichia pastoris. The data show that the relative efficiencies of W1, MF4 I, INU1 A, αpre, and HFBI signal peptides are 23.5%, 203.5%, 0, 79.7%, and 120.3% compared with α-factor, respectively. The further gene copy number determination by the quantitative real-time PCR reveals that the MAN activities mediated by α-factor from 1 to 6 gene copy number levels are 12.95, 43.33, 126.63, 173.53, 103.23 and 88.63 U/m L, while those mediated by MF4 I are 79.22, 133.89, 260.14, 347.5, 206.15 and 181.89 U/m L, respectively. The maximum MAN activity reached 347.5 U/m L with 4 gene copies mediated by MF4 I. These results indicate that replacing the signal peptide α-factor with MF4 I and increasing MAN gene copies to a proper number can greatly improve the secretory expression of MAN.展开更多
Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application...Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.展开更多
Serratia marcescens ECUI010, as an extracellular lipase and a significant catalyst, which had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterifica...Serratia marcescens ECUI010, as an extracellular lipase and a significant catalyst, which had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications, was previously mostly expressed intracellularly as inclusion bodies in Escherichia coli. Denaturation and renaturation of inclusion bodies had a significant influence on the lipase activity. Thereupon, our present work described the secretion expression of gene encoding of this lipase in Pichia pastoris GS 115 and characterization of the recombinant enzyme. Firstly, the obtained lipA gene fragment was introduced into P. pastoris expression vector pPIC9K, the lipA gene without its signal sequence were cloned downstream to the alpha-mating factor signal and expressed in P. pastoris GS115 under the control of AOXI promoter, and the recombinant plasmid pPIC9K-lipA was transformed into P. pastoris strain GS115 by electroporation, and this recombinant P. pastoris were identified by PCR. Then lipase activity was detected on BMMY-tributyrin and olive oil agar plates containing Rhodamine B. Transformants with lipase activity by screening were induced 6 days by methanol, one band of 77 kDa protein could be observed by 10% SDS-PAGE. p-nitrophenyl esters of fatty acids were used as the substrates in an automated activity assay of liquid culture media. The pH and temperature optimum of lipase were pH 8.5 and 40℃ respectively. The stability and effects of metal ions and other reagents were also determined. However, the recombinant fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 4 U of lipase activity per milliliter of culture media supernatant.展开更多
T4 lysozyme was engineered with disulfide bonds and expressed in Pichia pastoris. The secreted proteins were purified and made into powder by lyophiliza-tion. Recombinant protein purity was more than 70% measured by H...T4 lysozyme was engineered with disulfide bonds and expressed in Pichia pastoris. The secreted proteins were purified and made into powder by lyophiliza-tion. Recombinant protein purity was more than 70% measured by HPLC. The lytic activity of variant T4-lysozyme was measured by the lysis of the cel wal of Xan-thomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Ralstonia solanacearum comb. nov, Clavibacter michiganensis subsp. michiganensis, X. campestris pv. mal-vacearum, Fusarium oxysporium sp. vasinfectum, Verticil ium dahliae kleb. Inhibition zone assay showed that variant T4 lysozyme significantly inhibited X. o. oryzicola and X. c. malvacearum. The antifungal activities of this protein against F. o. vasin-fectum and V. d. kleb were also analyzed.展开更多
In this study, the rice straw was hydrolysed by using 3.0% (w/v) H2SO4 followed by enzymatic hydrolysis. The rice straw hydrolysate obtained was treated with charcoal powder and the optimal condition of detoxificati...In this study, the rice straw was hydrolysed by using 3.0% (w/v) H2SO4 followed by enzymatic hydrolysis. The rice straw hydrolysate obtained was treated with charcoal powder and the optimal condition of detoxification with charcoal powder was investigated. The results showed that the optimal condition for detoxification was the use of 2.5 grams of non-sterilized charcoal powder in 100 mL hydrolysate. The mixture was operated at pH 5.0, 30 ℃ and 160 rpm for 5 min. The detoxified hydrolysate was then used for ethanol production using P. stipitis TISTR 5806. The condition of the detoxified hydrolysate fermentation which gave maximum ethanol concentration of 21 g/L was at pH 5.0, 30 ℃ and 160 rpm for 72 h. Without detoxification, the P. stipitis TISTR 5806 could not however utilize the hydrolysate for ethanol production.展开更多
Hexavalent chromium (Cr(VI)) pollution has become one of the most serious environmental problems today. One removal strategy comprises the microbial reduction of Cr(VI), is regarded as a cost-effective biotechno...Hexavalent chromium (Cr(VI)) pollution has become one of the most serious environmental problems today. One removal strategy comprises the microbial reduction of Cr(VI), is regarded as a cost-effective biotechnology for the treatment of high volume and low concentration complex wastewaters. In this work a yeast strain that exhibits high Cr(VI) resistance was isolated from soil sediment. The isolated yeast was identified as Pichia anomala by sequencing analysis. The yeast showed a remarkable capacity to completely reduce 25 and 50 mg/L of Cr(VI) in 48 h under aerobic conditions. The increase of initial Cr(VI) concentration influenced reduction, growth and specific growth rate. This strain also exhibited multiple heavy metal tolerance. The presence of anions and cations in the medium had a great influence on chromium reduction. Fractionation of the cells showed that the mechanism of Cr(VI) removal by this strain is "adsorption-coupled reduction" and the hexavalent chromate reductase activity was expressed constitutively. FTIR analysis of the biomass exposed to chromium showed that the binding process of the chromium ions involves the active participation of functional groups present in the external surface of biomass. High Cr(VI) concentration resistance and high Cr(VI) reducing ability of this strain make it a suitable candidate for bioremediation.展开更多
OBJECTIVES: Heparin-binding neurite-promoting factor (HBNF) is a heparin-binding protein primarily found in the brain, which can stimulate neurite outgrowth in vitro. We expressed recombinant human heparin-binding neu...OBJECTIVES: Heparin-binding neurite-promoting factor (HBNF) is a heparin-binding protein primarily found in the brain, which can stimulate neurite outgrowth in vitro. We expressed recombinant human heparin-binding neurite-promoting factor (hrHBNF) using a yeast system, and observed its activity in stimulating neurite outgrowth in vitro. METHODS: cDNA encoding mature human HBNF was amplified from total RNA isolated from an 18-week aborted human fetal brain by RT-PCR method. After amplification, the HBNF cDNA gene was cloned into pPIC9K, a shuttle expression vector for yeast system. The positive clone of expression vector bearing HBNF cDNA gene was obtained by screening. Verified recombinant vector was then used to transform Pichia strain GS115 by electroporation. His(+) transformants were selected on minimal dextrose medium (MD) plates which were histidine free. His(+) yeast recombinants with multi-copy inserts were screened in vivo by their resistance to G418. PCR analysis was used to confirm the integration of the HBNF cDNA gene into the Pichia genome. Secreted expression of hrHBNF protein in culture medium was obtained when the positive clone containing the HBNF cDNA gene was induced by methanol. The hrHBNF product purified by gel chromatography was added to cultured rat pheochromocytoma (PC12) cells to observe its ability to stimulate neurite outgrowth. RESULTS: In the recombinant expression vector, the insert was sequenced to show exactly the sequence encoding human HBNF according to Genbank data. The HBNF cDNA gene was cloned downstream to the alpha-factor, and its open reading frame was in frame with the alpha-factor signal sequence in pPIC9K. SDS-PAGE showed that the molecular weight of the induced expression product was about 18 kDa, consistent with that of human HBNF reported in the literature. The protein product did promote neurite outgrowth in cultured rat pheochromocytoma (PC12) cells. CONCLUSION: Recombinant human heparin-binding neurite-promoting factor can be expressed with a yeast system, and its product possesses the biological activity to promote neurite outgrowth.展开更多
文摘[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was amplified by PCR and inserted into the secreted expression vector pPIC9K to get recombinant plasmid. The recombinant plasmid pPIC9K-sarr~ was integrated into Pichia pastoris GSl15 genome by electroporation and induced by methanol. The activity of the recombinant enzyme was measured using high-pedormance liquid chroma- tography (HPLC) by determining the production of S-adenosy-L-methionine (SAM) with the enzyme secreted. [ ResultJ The molecular weight of the expression protein identified by SDS-PAGE was about 50 kD, being larger than the theoretical molecular mass of SAMS, which might be due to the glycosytation in the process of secretion. Methanol-induction as well as preliminary purification could enhance the enzyme activity, espe- cially the latter, after which the specific activity of SAMS was improved to 61.48 U/rng. [Conclusion] SAMS with biological activity was secreted successfully in Pichia pastoris GSl15 for the first time. And it is the start for the genetic engineering strains to open up prospects for industrial production.
基金Supported by the National Natural Science Foundation of China(31100136)the Special Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu Province[CX(12)5051]~~
文摘[Objective] This study aimed to investigate the secretory expression of P97R1 gene of Mycoplasma hyopneumoniae(Mhp) in Pichia pastoris expression system and the primary application; of the expression product. [Method] A pair of specific primers was designed to conduct PCR according to the Mhp P97R1 gene sequence in Genbank, and the amplified P97R1 gene was cloned into the pPICZa-A yeast expression vector to construct the secretory recombinant expression vector pPICZa-A-P97R1. The plasmid pPICZa-A-p97R1 linearized by Sac I was transformed into P. pastoris GSl15 by electroporation. Positive transformant identified by PCR was incubated to express P97R1 protein after methanol induction. And the expression product was identified using SDS-PAGE and Western-blotting anal.wsis. [Result] P97R1 protein was successfully expressed in the P. pastoris system, with a secre- tory amount of 499μg/ml, and revealed good reactogenicity. Meanwhile, an indirect ELISA method was established with P97R1 protein after the optimization of each reaction factor, which showed good specificity and repeatability according to repeated tests. [Conclusion] This study provides bases for developing the ELISA Kit for anti- body detection and genetically engineered vaccine to Mhp.
文摘ln this study, effects of UV irradiation and 60Co-γ irradiation on fermenta-tion of xylose to ethanol by Pichia stipitis were analyzed to investigate the optimal mutagenic conditions. According to the growth curve and fermentation curve of P. stipi-tis, the optimal incubation duration and fermentation duration of P. stipitis mutant strain were 18 and 48 h, respectively. The cel concentration of original yeast liquid was 107 cel s/ml. After mutagenesis by UV irradiation and 60Co-γ irradiation, yeast liquid was incubated in 20 g/L xylose media for 48 h. According to the results, after UV irradiation for 45-75 s, transformation efficiency reached 0.3794 g/g, which was 74.39% of the theoretical value; after irradiation with 800-1 000 Gy 60Co-γ, transforma-tion efficiency reached 0.3165 g/g, which was 62.06% of the theoretical value. Therefore, both UV irradiation and 60Co-γ irradiation could improve the efficiency of xylose fermentation to ethanol by P. stipitis under appropriate conditions.
基金Supported by Scientific Research Start-up Fund for Doctors of Liaocheng University(31805)~~
文摘[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector pPIC9K containing AOXl promoter and the sequences of secreting α-signal peptides. Recombinant plasmid was linearized by Sal l and transformed into P. pastoris GSl15 competent cells by electroporation. Positive integrated clones were screened out, and the At2G34450 protein was expressed under the induction of methanol. [Result] The At2G34450 protein was expressed in yeast medium through methanol induction. SDS-PAGE results showed that recombination product was At2G34450 protein. [Conclusion] At2G34450 protein was successfully expressed in the P. pastoris system for the first time, which paves a direct path to further research on the functions of HMGB family members.
文摘[Objective] This study aimed to investigate the expression of exogenous gene in prokaryotes and eukaryotes. [Method] The expression vector pTYB2-WF harboring target gene was transformed into E. coli ER2566. IPTG was employed to induce the expression of phytase gene. The expression of phytase fusion protein was detected by SDS-PAGE, and the fusion protein was further purified. Phytase gene phyA was expressed in Pichia pastoris expression system. Yeast recombinant vector pPIC9K-phyA was constructed and transformed into P. pastoris GS115 to construct engineering strain GS115-pPIC9K-phyA. [Result] Phytase protein was ex-pressed under methanol induction. Enzyme activity assay indicated that the activity of phytase was 7.3 U/ml. P. pastoris engineering strain GS115-pPIC9K-phyA was successful y constructed. [Conclusion] Methanol yeast expression mechanisms play a certain role in molecular biology and industrial applications.
文摘Aim To induce and express the T4 lysozyme in Pichia pastoris and test the antibacterial activity of the protein. Methods T4 lysozyme gene was inserted into expression vector pPIC9K of Pichia pastoris with the fusion at N terminal. The recombinant plasmid was digested by Sal I and then introduced into prepared GS115 competent cells by electroporation. Positive clone and multiple inserts were screened. The secreted proteins in the supernatants were tested. In the agar holes diffusion assay, our expressed protein showed significant antibacterial circles. Results T4 lysozyme protein inhibited the growth of staphylococcus aureus and streptococcus Pneumoniae. There was no difference in the bactericidal activity and the amount of protein expression between the single and multiple copies. The antibacterial activity of expressed protein remained the same during the heat stability test. Conclusion T4 lysozyme was successfully induced and expressed in Pichia pastoris. There is no relationship between copy number and expression. T4 lysozyme protein is heat stable.
基金Supported by the Key Agricultral Technology Program of Shanghai Science & Technology Committee(073919108)MajorState Basic Research Development Program of China(2007CB714303)
文摘The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.
基金Project(31870115)supported by the National Natural Science Foundation of ChinaProject(2015JJ5006)supported by the Natural Science of Hunan Province&Changde City Joint Foundation,ChinaProjects(2015zzts268,ZY2015823)supported by the Fundamental Research Funds for the Central Universities,China
文摘High-level expression ofβ-mannanase has been reported in Pichia pastoris under control of the GAP promoter.Two factors that strongly influence protein production and fermentation process development in Pichia pastoris protein expression system are gene dosage and cultivation temperature.The aim of this research was to improve the expression level ofβ-mannanase in Pichia pastoris by proper increasing the gene dosage and decreasing the culture temperature.To this end,a panel of strains harboring different copy numbers ofβ-mannanase gene were obtained by multiple zeocin concentration gradients screening,the influence of gene copy number on the expression ofβ-mannanase in Pichia pastoris X33 was investigated.With the constitutive GAP promoter,the four copies strain exhibited a 4.04-fold higherβ-mannanase yield and a 1.83-fold higher total secretion proteins than the one copy strain,but an increase of the copy number above four resulted in a decrease of expression.Furthermore,the effects of culture temperature were studied in flask.The decreased culture temperature of four copies strain resulted in a 1.8-fold(26℃)and 3.5-fold(22℃)higherβ-mannanase activity compared to that at 30℃.A fed-batch strategy was successfully used for high cell-density fermentation andβ-mannanase activity reached 2124 U/mL after cultivation for 72 h in a 5 L fermenter.
基金Project(13JJ9002)supported by Hunan Provincial Natural Science Foundation of ChinaProject(2012XK4081)supported by the Key Science Technology Plan Project of Hunan Provincial Science&Technology Department,ChinaProject(CX2012B124)supported by the Graduate Degree Thesis Innovation Program of Hunan Province,China
文摘In order to improve the extracellular endo-1,4-β-mannosidase(MAN) activity of recombinant Pichia pastoris, optimization of signal peptides was investigated. At first, five potential signal peptides(W1, MF4 I, INU1 A, αpre, HFBI) were chosen to be analyzed by Signal P 4.0, among which W1 was designed. Then, the widely used signal peptide α-factor in expression vector p GAPZαA was replaced by those five signal peptides to reconstruct five new expression vectors. MAN activity was assayed after expression vectors were transformed into Pichia pastoris. The data show that the relative efficiencies of W1, MF4 I, INU1 A, αpre, and HFBI signal peptides are 23.5%, 203.5%, 0, 79.7%, and 120.3% compared with α-factor, respectively. The further gene copy number determination by the quantitative real-time PCR reveals that the MAN activities mediated by α-factor from 1 to 6 gene copy number levels are 12.95, 43.33, 126.63, 173.53, 103.23 and 88.63 U/m L, while those mediated by MF4 I are 79.22, 133.89, 260.14, 347.5, 206.15 and 181.89 U/m L, respectively. The maximum MAN activity reached 347.5 U/m L with 4 gene copies mediated by MF4 I. These results indicate that replacing the signal peptide α-factor with MF4 I and increasing MAN gene copies to a proper number can greatly improve the secretory expression of MAN.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 201103034)
文摘Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.
文摘Serratia marcescens ECUI010, as an extracellular lipase and a significant catalyst, which had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications, was previously mostly expressed intracellularly as inclusion bodies in Escherichia coli. Denaturation and renaturation of inclusion bodies had a significant influence on the lipase activity. Thereupon, our present work described the secretion expression of gene encoding of this lipase in Pichia pastoris GS 115 and characterization of the recombinant enzyme. Firstly, the obtained lipA gene fragment was introduced into P. pastoris expression vector pPIC9K, the lipA gene without its signal sequence were cloned downstream to the alpha-mating factor signal and expressed in P. pastoris GS115 under the control of AOXI promoter, and the recombinant plasmid pPIC9K-lipA was transformed into P. pastoris strain GS115 by electroporation, and this recombinant P. pastoris were identified by PCR. Then lipase activity was detected on BMMY-tributyrin and olive oil agar plates containing Rhodamine B. Transformants with lipase activity by screening were induced 6 days by methanol, one band of 77 kDa protein could be observed by 10% SDS-PAGE. p-nitrophenyl esters of fatty acids were used as the substrates in an automated activity assay of liquid culture media. The pH and temperature optimum of lipase were pH 8.5 and 40℃ respectively. The stability and effects of metal ions and other reagents were also determined. However, the recombinant fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 4 U of lipase activity per milliliter of culture media supernatant.
基金Supported by the National Biotechnology Program for Crop Breeding(2013ZX08005004,2009ZX08009-089B)
文摘T4 lysozyme was engineered with disulfide bonds and expressed in Pichia pastoris. The secreted proteins were purified and made into powder by lyophiliza-tion. Recombinant protein purity was more than 70% measured by HPLC. The lytic activity of variant T4-lysozyme was measured by the lysis of the cel wal of Xan-thomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Ralstonia solanacearum comb. nov, Clavibacter michiganensis subsp. michiganensis, X. campestris pv. mal-vacearum, Fusarium oxysporium sp. vasinfectum, Verticil ium dahliae kleb. Inhibition zone assay showed that variant T4 lysozyme significantly inhibited X. o. oryzicola and X. c. malvacearum. The antifungal activities of this protein against F. o. vasin-fectum and V. d. kleb were also analyzed.
文摘In this study, the rice straw was hydrolysed by using 3.0% (w/v) H2SO4 followed by enzymatic hydrolysis. The rice straw hydrolysate obtained was treated with charcoal powder and the optimal condition of detoxification with charcoal powder was investigated. The results showed that the optimal condition for detoxification was the use of 2.5 grams of non-sterilized charcoal powder in 100 mL hydrolysate. The mixture was operated at pH 5.0, 30 ℃ and 160 rpm for 5 min. The detoxified hydrolysate was then used for ethanol production using P. stipitis TISTR 5806. The condition of the detoxified hydrolysate fermentation which gave maximum ethanol concentration of 21 g/L was at pH 5.0, 30 ℃ and 160 rpm for 72 h. Without detoxification, the P. stipitis TISTR 5806 could not however utilize the hydrolysate for ethanol production.
文摘Hexavalent chromium (Cr(VI)) pollution has become one of the most serious environmental problems today. One removal strategy comprises the microbial reduction of Cr(VI), is regarded as a cost-effective biotechnology for the treatment of high volume and low concentration complex wastewaters. In this work a yeast strain that exhibits high Cr(VI) resistance was isolated from soil sediment. The isolated yeast was identified as Pichia anomala by sequencing analysis. The yeast showed a remarkable capacity to completely reduce 25 and 50 mg/L of Cr(VI) in 48 h under aerobic conditions. The increase of initial Cr(VI) concentration influenced reduction, growth and specific growth rate. This strain also exhibited multiple heavy metal tolerance. The presence of anions and cations in the medium had a great influence on chromium reduction. Fractionation of the cells showed that the mechanism of Cr(VI) removal by this strain is "adsorption-coupled reduction" and the hexavalent chromate reductase activity was expressed constitutively. FTIR analysis of the biomass exposed to chromium showed that the binding process of the chromium ions involves the active participation of functional groups present in the external surface of biomass. High Cr(VI) concentration resistance and high Cr(VI) reducing ability of this strain make it a suitable candidate for bioremediation.
文摘OBJECTIVES: Heparin-binding neurite-promoting factor (HBNF) is a heparin-binding protein primarily found in the brain, which can stimulate neurite outgrowth in vitro. We expressed recombinant human heparin-binding neurite-promoting factor (hrHBNF) using a yeast system, and observed its activity in stimulating neurite outgrowth in vitro. METHODS: cDNA encoding mature human HBNF was amplified from total RNA isolated from an 18-week aborted human fetal brain by RT-PCR method. After amplification, the HBNF cDNA gene was cloned into pPIC9K, a shuttle expression vector for yeast system. The positive clone of expression vector bearing HBNF cDNA gene was obtained by screening. Verified recombinant vector was then used to transform Pichia strain GS115 by electroporation. His(+) transformants were selected on minimal dextrose medium (MD) plates which were histidine free. His(+) yeast recombinants with multi-copy inserts were screened in vivo by their resistance to G418. PCR analysis was used to confirm the integration of the HBNF cDNA gene into the Pichia genome. Secreted expression of hrHBNF protein in culture medium was obtained when the positive clone containing the HBNF cDNA gene was induced by methanol. The hrHBNF product purified by gel chromatography was added to cultured rat pheochromocytoma (PC12) cells to observe its ability to stimulate neurite outgrowth. RESULTS: In the recombinant expression vector, the insert was sequenced to show exactly the sequence encoding human HBNF according to Genbank data. The HBNF cDNA gene was cloned downstream to the alpha-factor, and its open reading frame was in frame with the alpha-factor signal sequence in pPIC9K. SDS-PAGE showed that the molecular weight of the induced expression product was about 18 kDa, consistent with that of human HBNF reported in the literature. The protein product did promote neurite outgrowth in cultured rat pheochromocytoma (PC12) cells. CONCLUSION: Recombinant human heparin-binding neurite-promoting factor can be expressed with a yeast system, and its product possesses the biological activity to promote neurite outgrowth.