[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was ...[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was amplified by PCR and inserted into the secreted expression vector pPIC9K to get recombinant plasmid. The recombinant plasmid pPIC9K-sarr~ was integrated into Pichia pastoris GSl15 genome by electroporation and induced by methanol. The activity of the recombinant enzyme was measured using high-pedormance liquid chroma- tography (HPLC) by determining the production of S-adenosy-L-methionine (SAM) with the enzyme secreted. [ ResultJ The molecular weight of the expression protein identified by SDS-PAGE was about 50 kD, being larger than the theoretical molecular mass of SAMS, which might be due to the glycosytation in the process of secretion. Methanol-induction as well as preliminary purification could enhance the enzyme activity, espe- cially the latter, after which the specific activity of SAMS was improved to 61.48 U/rng. [Conclusion] SAMS with biological activity was secreted successfully in Pichia pastoris GSl15 for the first time. And it is the start for the genetic engineering strains to open up prospects for industrial production.展开更多
[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector ...[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector pPIC9K containing AOXl promoter and the sequences of secreting α-signal peptides. Recombinant plasmid was linearized by Sal l and transformed into P. pastoris GSl15 competent cells by electroporation. Positive integrated clones were screened out, and the At2G34450 protein was expressed under the induction of methanol. [Result] The At2G34450 protein was expressed in yeast medium through methanol induction. SDS-PAGE results showed that recombination product was At2G34450 protein. [Conclusion] At2G34450 protein was successfully expressed in the P. pastoris system for the first time, which paves a direct path to further research on the functions of HMGB family members.展开更多
[Objective] This study aimed to investigate the expression of exogenous gene in prokaryotes and eukaryotes. [Method] The expression vector pTYB2-WF harboring target gene was transformed into E. coli ER2566. IPTG was ...[Objective] This study aimed to investigate the expression of exogenous gene in prokaryotes and eukaryotes. [Method] The expression vector pTYB2-WF harboring target gene was transformed into E. coli ER2566. IPTG was employed to induce the expression of phytase gene. The expression of phytase fusion protein was detected by SDS-PAGE, and the fusion protein was further purified. Phytase gene phyA was expressed in Pichia pastoris expression system. Yeast recombinant vector pPIC9K-phyA was constructed and transformed into P. pastoris GS115 to construct engineering strain GS115-pPIC9K-phyA. [Result] Phytase protein was ex-pressed under methanol induction. Enzyme activity assay indicated that the activity of phytase was 7.3 U/ml. P. pastoris engineering strain GS115-pPIC9K-phyA was successful y constructed. [Conclusion] Methanol yeast expression mechanisms play a certain role in molecular biology and industrial applications.展开更多
Aim To induce and express the T4 lysozyme in Pichia pastoris and test the antibacterial activity of the protein. Methods T4 lysozyme gene was inserted into expression vector pPIC9K of Pichia pastoris with the fusion a...Aim To induce and express the T4 lysozyme in Pichia pastoris and test the antibacterial activity of the protein. Methods T4 lysozyme gene was inserted into expression vector pPIC9K of Pichia pastoris with the fusion at N terminal. The recombinant plasmid was digested by Sal I and then introduced into prepared GS115 competent cells by electroporation. Positive clone and multiple inserts were screened. The secreted proteins in the supernatants were tested. In the agar holes diffusion assay, our expressed protein showed significant antibacterial circles. Results T4 lysozyme protein inhibited the growth of staphylococcus aureus and streptococcus Pneumoniae. There was no difference in the bactericidal activity and the amount of protein expression between the single and multiple copies. The antibacterial activity of expressed protein remained the same during the heat stability test. Conclusion T4 lysozyme was successfully induced and expressed in Pichia pastoris. There is no relationship between copy number and expression. T4 lysozyme protein is heat stable.展开更多
Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application...Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.展开更多
文摘[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was amplified by PCR and inserted into the secreted expression vector pPIC9K to get recombinant plasmid. The recombinant plasmid pPIC9K-sarr~ was integrated into Pichia pastoris GSl15 genome by electroporation and induced by methanol. The activity of the recombinant enzyme was measured using high-pedormance liquid chroma- tography (HPLC) by determining the production of S-adenosy-L-methionine (SAM) with the enzyme secreted. [ ResultJ The molecular weight of the expression protein identified by SDS-PAGE was about 50 kD, being larger than the theoretical molecular mass of SAMS, which might be due to the glycosytation in the process of secretion. Methanol-induction as well as preliminary purification could enhance the enzyme activity, espe- cially the latter, after which the specific activity of SAMS was improved to 61.48 U/rng. [Conclusion] SAMS with biological activity was secreted successfully in Pichia pastoris GSl15 for the first time. And it is the start for the genetic engineering strains to open up prospects for industrial production.
基金Supported by Scientific Research Start-up Fund for Doctors of Liaocheng University(31805)~~
文摘[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector pPIC9K containing AOXl promoter and the sequences of secreting α-signal peptides. Recombinant plasmid was linearized by Sal l and transformed into P. pastoris GSl15 competent cells by electroporation. Positive integrated clones were screened out, and the At2G34450 protein was expressed under the induction of methanol. [Result] The At2G34450 protein was expressed in yeast medium through methanol induction. SDS-PAGE results showed that recombination product was At2G34450 protein. [Conclusion] At2G34450 protein was successfully expressed in the P. pastoris system for the first time, which paves a direct path to further research on the functions of HMGB family members.
文摘[Objective] This study aimed to investigate the expression of exogenous gene in prokaryotes and eukaryotes. [Method] The expression vector pTYB2-WF harboring target gene was transformed into E. coli ER2566. IPTG was employed to induce the expression of phytase gene. The expression of phytase fusion protein was detected by SDS-PAGE, and the fusion protein was further purified. Phytase gene phyA was expressed in Pichia pastoris expression system. Yeast recombinant vector pPIC9K-phyA was constructed and transformed into P. pastoris GS115 to construct engineering strain GS115-pPIC9K-phyA. [Result] Phytase protein was ex-pressed under methanol induction. Enzyme activity assay indicated that the activity of phytase was 7.3 U/ml. P. pastoris engineering strain GS115-pPIC9K-phyA was successful y constructed. [Conclusion] Methanol yeast expression mechanisms play a certain role in molecular biology and industrial applications.
文摘Aim To induce and express the T4 lysozyme in Pichia pastoris and test the antibacterial activity of the protein. Methods T4 lysozyme gene was inserted into expression vector pPIC9K of Pichia pastoris with the fusion at N terminal. The recombinant plasmid was digested by Sal I and then introduced into prepared GS115 competent cells by electroporation. Positive clone and multiple inserts were screened. The secreted proteins in the supernatants were tested. In the agar holes diffusion assay, our expressed protein showed significant antibacterial circles. Results T4 lysozyme protein inhibited the growth of staphylococcus aureus and streptococcus Pneumoniae. There was no difference in the bactericidal activity and the amount of protein expression between the single and multiple copies. The antibacterial activity of expressed protein remained the same during the heat stability test. Conclusion T4 lysozyme was successfully induced and expressed in Pichia pastoris. There is no relationship between copy number and expression. T4 lysozyme protein is heat stable.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 201103034)
文摘Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.