To study the antifungal effect of chalcone derivatives. Methods Sixteenchalcone derivatives were synthesized and confirmed by ~1H NMR and IR spectra, and tested forantifungal activity against four common pathogenic fu...To study the antifungal effect of chalcone derivatives. Methods Sixteenchalcone derivatives were synthesized and confirmed by ~1H NMR and IR spectra, and tested forantifungal activity against four common pathogenic fungi. Their structure-activity relationship isdiscussed. Results Among 16 title compounds, there were 5 new compounds, which have not beenreported before. The preliminary antifungal test showed that all title compounds exhibitedantifungal activities to a certain extent. The activity of compound 8 against Trichophyton rubrumhad a potency equal to that of fluconazole, with a MIC of 4 μg·mL^(-1) . Conclusion Sixteenchalcones were prepared and their antifungal activities against four common pathogenic fungi invitro were examined. Some of them exhibited antifungal activities to a certain extent.展开更多
Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused ...Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.展开更多
文摘To study the antifungal effect of chalcone derivatives. Methods Sixteenchalcone derivatives were synthesized and confirmed by ~1H NMR and IR spectra, and tested forantifungal activity against four common pathogenic fungi. Their structure-activity relationship isdiscussed. Results Among 16 title compounds, there were 5 new compounds, which have not beenreported before. The preliminary antifungal test showed that all title compounds exhibitedantifungal activities to a certain extent. The activity of compound 8 against Trichophyton rubrumhad a potency equal to that of fluconazole, with a MIC of 4 μg·mL^(-1) . Conclusion Sixteenchalcones were prepared and their antifungal activities against four common pathogenic fungi invitro were examined. Some of them exhibited antifungal activities to a certain extent.
基金Supported by the National Natural Science Foundation of China(2160060639)the Natural Science Foundation of Jiangsu Province(BK20160984)the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry(ZX15511310002)
文摘Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.