期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
蒸发盘管内制冷剂喷射蒸发的制冷系统研究
1
作者 刘斌 许玉龙 +1 位作者 王清伟 段爱鹏 《制冷学报》 CAS CSCD 北大核心 2016年第4期76-80,共5页
制冷剂高压能的利用对改善制冷系统运行有重要意义。基于场协同理论,提出了一种利用制冷剂在蒸发管内进行喷射的新型制冷系统,理论上分析了协同角随毛细管管径和喷射孔直径的变化规律,并进行了相关的可视化实验。理论分析结果表明:协同... 制冷剂高压能的利用对改善制冷系统运行有重要意义。基于场协同理论,提出了一种利用制冷剂在蒸发管内进行喷射的新型制冷系统,理论上分析了协同角随毛细管管径和喷射孔直径的变化规律,并进行了相关的可视化实验。理论分析结果表明:协同角随着喷射孔直径的增大而增大;随着毛细管管径的减小而减小,但是随之减小的速率降低。实验结果表明:和传统的毛细管节流制冷系统相比,开孔实验的制冷剂的充注量减少70%以上,COP提高了9%,系统达到稳定的时间减少了70%。 展开更多
关键词 毛细管管径 喷射孔 场协同
下载PDF
Capillary force of a novel skew-grooved wick structure for micro heat pipes 被引量:2
2
作者 吴菊红 汤勇 陆龙生 《Journal of Central South University》 SCIE EI CAS 2011年第6期2170-2175,共6页
In order to improve the capillary force of grooved wick, a novel skew-grooved wick structure was proposed for micro heat pipes. Risen meniscus experiments were carried out to research the capillary force of the skew-g... In order to improve the capillary force of grooved wick, a novel skew-grooved wick structure was proposed for micro heat pipes. Risen meniscus experiments were carried out to research the capillary force of the skew-grooved and rectangle-grooved wick and a comparison of capillarity between the two wick structures was explored. A theoretical capillary force model of skew-grooved wick structure was also developed to calculate its effective capillary radius by comparing with the rectangle-grooved wick. From the experimental results, the maximum capillary force of the skewed-grooved wick is 8.62% larger than that of the rectangle-grooved wick. From the theoretical analysis, because the skewed-grooved wick has a smaller effective capillary radius, its maximum capillary force is 8.64% larger than that of the rectangle-grooved wick. The results indicate that the skew-grooved wick provides larger capillary force than the rectangle-grooved wick. 展开更多
关键词 skew-grooved wick micro heat pipe capillary force effective capillary radius
下载PDF
Thermal Characteristics of Heat Pipe with Axially Swallow-tailed Microgrooves 被引量:6
3
作者 陈永平 朱旺法 +1 位作者 张程宾 施明恒 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期185-193,共9页
A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial di... A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial distribution of capillary radius,and the effect of working temperature and wick structure on the maximum heat transfer capability,as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed.It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction,while increasing drastically at the beginning of the condenser section.The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase.In addition,the heat transfer capacity is deeply affected by the working temperature and the size of the wick.A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability.The effect of the working temperature on the total thermal resistance is insignificant;however,the total thermal resistance shows dependence upon the heat load.In addition,the accuracy of the model is also verified by the experiment in this paper. 展开更多
关键词 grooved heat pipe heat transfer capacity total thermal resistance CAPILLARY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部