Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of the...Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.展开更多
The behavior of building materials in constructions of civil structures is influenced by the surrounding moisture and it is a crucial for intensively examined field of the construction physics. Most standard building ...The behavior of building materials in constructions of civil structures is influenced by the surrounding moisture and it is a crucial for intensively examined field of the construction physics. Most standard building materials are characterized by a porous structure, which results in the ability to receive water in a liquid as well as gaseous form in the inner pores. The water fills the storage space of pores under certain conditions; it is transported and transferred back to the surroundings. Many technical studies show that the moisture monitoring is prevailingly based on experiments. Previous calculating methods introduced, e.g., by Glaser, which became the basis for the standard calculations in many European countries in the 1960s, are not always sufficient with respect to the demands of the civil structures. The moisture influences thermo-insulating properties of the material. By a change of the thermo insulation properties of the construction also the thermal and diffusion scheme of the construction is changed and its thermal resistance is decreasing. Faults in the thermo-technical projects occur when thermal conductivity coefficient L values for material in a dry state are substituted.The aim of the research is to determine the capillary conductivity coefficient as a characteristic material moisture parameter of the building materials by the means of a non-destructive method using the experimentally assembled apparatus developed at the Department of Civil Engineering, Brno University of Technology. Keywords: Capillary conductivity coefficient, moisture transfer, EMWR (electromagnetic microwave radiation), diffusion展开更多
The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet lo...The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet location deviation from the symmetric geometry center and different flow rates at two symmetric outlets) generate asymmetric flow fields near the droplet, which results in the asymmetric breakup of the latter. Four typical breakup regimes(no breakup, one-side breakup, retraction breakup and direct breakup) have been observed.Two regime maps are plotted to describe the transition from one regime to another for the two types of different asymmetries, respectively. A power law model, which is based on the three critical factors(the capillary number,the asymmetry of flow fields and the initial volume ratio), is employed to predict the volume ratio of the two unequal daughter droplets generated in the direct breakup. The influences of capillary numbers and the asymmetries have been studied systematically in this paper. The larger the asymmetry is, the bigger the oneside breakup zone is. The larger the capillary number is, the more possible the breakup is in the direct breakup zone. When the radius of the initial droplet is 20 μm, the critical capillary numbers are 0.122, 0.128, 0.145,0.165, 0.192 and 0.226 for flow asymmetry factor AS= 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, in the flow system whose asymmetry is generated by location deviations. In the flow system whose asymmetry is generated by two different flow rates at two outlets, the critical capillary numbers are 0.121, 0.133, 0.145, 0.156 and 0.167 for AS= 1/21, 3/23, 1/5, 7/27 and 9/29, respectively.展开更多
文摘Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.
文摘The behavior of building materials in constructions of civil structures is influenced by the surrounding moisture and it is a crucial for intensively examined field of the construction physics. Most standard building materials are characterized by a porous structure, which results in the ability to receive water in a liquid as well as gaseous form in the inner pores. The water fills the storage space of pores under certain conditions; it is transported and transferred back to the surroundings. Many technical studies show that the moisture monitoring is prevailingly based on experiments. Previous calculating methods introduced, e.g., by Glaser, which became the basis for the standard calculations in many European countries in the 1960s, are not always sufficient with respect to the demands of the civil structures. The moisture influences thermo-insulating properties of the material. By a change of the thermo insulation properties of the construction also the thermal and diffusion scheme of the construction is changed and its thermal resistance is decreasing. Faults in the thermo-technical projects occur when thermal conductivity coefficient L values for material in a dry state are substituted.The aim of the research is to determine the capillary conductivity coefficient as a characteristic material moisture parameter of the building materials by the means of a non-destructive method using the experimentally assembled apparatus developed at the Department of Civil Engineering, Brno University of Technology. Keywords: Capillary conductivity coefficient, moisture transfer, EMWR (electromagnetic microwave radiation), diffusion
基金Supported by Major State Basic Research Development Program of China(2012CB720305)the National Natural Science Foundation of China(21376162)
文摘The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet location deviation from the symmetric geometry center and different flow rates at two symmetric outlets) generate asymmetric flow fields near the droplet, which results in the asymmetric breakup of the latter. Four typical breakup regimes(no breakup, one-side breakup, retraction breakup and direct breakup) have been observed.Two regime maps are plotted to describe the transition from one regime to another for the two types of different asymmetries, respectively. A power law model, which is based on the three critical factors(the capillary number,the asymmetry of flow fields and the initial volume ratio), is employed to predict the volume ratio of the two unequal daughter droplets generated in the direct breakup. The influences of capillary numbers and the asymmetries have been studied systematically in this paper. The larger the asymmetry is, the bigger the oneside breakup zone is. The larger the capillary number is, the more possible the breakup is in the direct breakup zone. When the radius of the initial droplet is 20 μm, the critical capillary numbers are 0.122, 0.128, 0.145,0.165, 0.192 and 0.226 for flow asymmetry factor AS= 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, in the flow system whose asymmetry is generated by location deviations. In the flow system whose asymmetry is generated by two different flow rates at two outlets, the critical capillary numbers are 0.121, 0.133, 0.145, 0.156 and 0.167 for AS= 1/21, 3/23, 1/5, 7/27 and 9/29, respectively.