在无胶筛分毛细管电泳中,以聚环氧乙烷为筛分介质,用硅烷化处理的毛细管柱(31.2 cm×75μmi.d.,有效长度21.0 cm)分离DL5000 DNA Marker(DNA长度为100~5000 bp),考察了筛分介质浓度、缓冲液pH值、分离电压和溴化乙锭浓度对分离双链...在无胶筛分毛细管电泳中,以聚环氧乙烷为筛分介质,用硅烷化处理的毛细管柱(31.2 cm×75μmi.d.,有效长度21.0 cm)分离DL5000 DNA Marker(DNA长度为100~5000 bp),考察了筛分介质浓度、缓冲液pH值、分离电压和溴化乙锭浓度对分离双链DNA片段的影响,优化得到分离100~5000 bp DNA片段的最佳条件.毛细管电泳的最佳条件为PEO浓度5 mg/mL,缓冲液pH值8.0,电压-12.0 kV及溴化乙锭浓度3.0μg/mL.在此条件下,可对山梨醇脱氢酶基因(SDH)和乙烯受体基因(ETR1)的聚合酶链式反应(PCR)扩增产物同时进行检测,分离和鉴定效果良好.展开更多
V3 loop of HIV-1 envelop protein gp120 plays a pivotal role in the entry process of HIV-1 into target cells. R15K, the relatively conserved region of V3 loop, can be used in binding studies instead of recombinant gp12...V3 loop of HIV-1 envelop protein gp120 plays a pivotal role in the entry process of HIV-1 into target cells. R15K, the relatively conserved region of V3 loop, can be used in binding studies instead of recombinant gp120 molecule. Polyanionic compounds, such as carrageenan, possess antiviral activity through disrupting gp120-CD4 interaction, and chemical modifications have been performed to improve such activity. In this work, we, for the first time, analyzed the interactions between carrageenan or its degradation and R15K by affinity capillary electrophoresis (ACE). Our results revealed that depolymerized carrageenan rather than carrageenan could bind to R15K. The binding constant of depolymerized carrageenan was (2.94±0.57)× 10^6 mol/L. Our finding indicated that the depolymerized carrageenan could be R15K antagonist, and it might inhibit the infection of HIV-1 through the entry process.展开更多
In order to determine the optimal mode of capillary electrophoresis for the impurity control of β-lactam antibiotics, different modes and various electrophoresis conditions for the separation of impurities were compa...In order to determine the optimal mode of capillary electrophoresis for the impurity control of β-lactam antibiotics, different modes and various electrophoresis conditions for the separation of impurities were compared.The results showed that micellar electrokinetic capillary chromatography(MEKC) was the optimal separation mode for the impurity profiling of β-lactam antibiotics.In MEKC,not only the common R and S isomers,Δ-2 andΔ-3 isomers,and Z and E isomers,but also the impurities of β-lactam antibiotics could be well separated compared with the capillary zone electrophoresis.Therefore,MECK is the first choice for the separation of impurities of β-lactam antibiotics with capillary electrophoresis(CE).The optimal separation could be achieved in MEKC by optimizing the pH and the concentrations of buffered saline,micelles and organic solvent(methanol) in running buffer.展开更多
文摘在无胶筛分毛细管电泳中,以聚环氧乙烷为筛分介质,用硅烷化处理的毛细管柱(31.2 cm×75μmi.d.,有效长度21.0 cm)分离DL5000 DNA Marker(DNA长度为100~5000 bp),考察了筛分介质浓度、缓冲液pH值、分离电压和溴化乙锭浓度对分离双链DNA片段的影响,优化得到分离100~5000 bp DNA片段的最佳条件.毛细管电泳的最佳条件为PEO浓度5 mg/mL,缓冲液pH值8.0,电压-12.0 kV及溴化乙锭浓度3.0μg/mL.在此条件下,可对山梨醇脱氢酶基因(SDH)和乙烯受体基因(ETR1)的聚合酶链式反应(PCR)扩增产物同时进行检测,分离和鉴定效果良好.
基金National Natural Science Foundation(Grant No.81373372)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110001110021 and 20130001110059)
文摘V3 loop of HIV-1 envelop protein gp120 plays a pivotal role in the entry process of HIV-1 into target cells. R15K, the relatively conserved region of V3 loop, can be used in binding studies instead of recombinant gp120 molecule. Polyanionic compounds, such as carrageenan, possess antiviral activity through disrupting gp120-CD4 interaction, and chemical modifications have been performed to improve such activity. In this work, we, for the first time, analyzed the interactions between carrageenan or its degradation and R15K by affinity capillary electrophoresis (ACE). Our results revealed that depolymerized carrageenan rather than carrageenan could bind to R15K. The binding constant of depolymerized carrageenan was (2.94±0.57)× 10^6 mol/L. Our finding indicated that the depolymerized carrageenan could be R15K antagonist, and it might inhibit the infection of HIV-1 through the entry process.
基金National Key New Drug R&D Program Foundation of China(Grant No.2009ZX09313-027)
文摘In order to determine the optimal mode of capillary electrophoresis for the impurity control of β-lactam antibiotics, different modes and various electrophoresis conditions for the separation of impurities were compared.The results showed that micellar electrokinetic capillary chromatography(MEKC) was the optimal separation mode for the impurity profiling of β-lactam antibiotics.In MEKC,not only the common R and S isomers,Δ-2 andΔ-3 isomers,and Z and E isomers,but also the impurities of β-lactam antibiotics could be well separated compared with the capillary zone electrophoresis.Therefore,MECK is the first choice for the separation of impurities of β-lactam antibiotics with capillary electrophoresis(CE).The optimal separation could be achieved in MEKC by optimizing the pH and the concentrations of buffered saline,micelles and organic solvent(methanol) in running buffer.