Porous microstructures on Nickel-Titanium (NiTi) alloy surfaces were prepared by linearly polarized femtosecond lasers with moving focal point at a certain speed. It was found that various novel micro-structures from ...Porous microstructures on Nickel-Titanium (NiTi) alloy surfaces were prepared by linearly polarized femtosecond lasers with moving focal point at a certain speed. It was found that various novel micro-structures from feather-like ripples to cluster-like porous textures could be formed with increasing laser energy. Particularly, when the laser energy was 400 μJ, a periodic porous metal surface was gen-erated. Measurement of X-ray diffraction showed that the grains on the sample surface were refined through femtosecond laser ablation processes, but the crystal structures still kept their original states. Analysis by X-ray photoelectron spectroscopy revealed that Ni/Ti on the sample surface was changed with an evident oxidization of titanium element under different laser energies. This investigation pro-vides a new approach to improve the biocompatibility of NiTi-based implant devices.展开更多
Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons ...Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal-cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.展开更多
The photodissociation/photoionization processes of chlorobromomethane (CH_2BrCl) induced by fem- tosecond laser pulses have been investigated using pump-probe scheme combined with the time-of-flight mass spectra. The ...The photodissociation/photoionization processes of chlorobromomethane (CH_2BrCl) induced by fem- tosecond laser pulses have been investigated using pump-probe scheme combined with the time-of-flight mass spectra. The dominate photoproducts are observed at different delay time of the pump (400 nm) and probe (800 nm) pulses and the corresponding time-dependence of them is obtained. The results show that the decaying time of the molecule CH_2BrCl in the A-band is in the 100 fs. The decaying tendencies of the fragment ions (CH_2Cl^+ and CH_2Br^+) and the parent ion (CH_2BrCl^+) are almost the same and the relative ratios of the yields of them keep constant during the delay time of 0 to 150 fs. These facts suggest that the fragment ions come from the fragmentation of the parent ions in excited electronic states. The probabilities to form CH_2Cl^+ and CH_2Br^+ are obtained from the relative ratio of the ion intensity and are about 71.6% and 14.2%, respectively.展开更多
基金Supported by the National Natural Science Foundation of China (Project No. 50471048)Specialized Research Fund for the Doctoral Program of Higher Education of China (Project No. 20040056016)
文摘Porous microstructures on Nickel-Titanium (NiTi) alloy surfaces were prepared by linearly polarized femtosecond lasers with moving focal point at a certain speed. It was found that various novel micro-structures from feather-like ripples to cluster-like porous textures could be formed with increasing laser energy. Particularly, when the laser energy was 400 μJ, a periodic porous metal surface was gen-erated. Measurement of X-ray diffraction showed that the grains on the sample surface were refined through femtosecond laser ablation processes, but the crystal structures still kept their original states. Analysis by X-ray photoelectron spectroscopy revealed that Ni/Ti on the sample surface was changed with an evident oxidization of titanium element under different laser energies. This investigation pro-vides a new approach to improve the biocompatibility of NiTi-based implant devices.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 90508003 and 30700215)
文摘Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal-cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10534010 and 20673140)
文摘The photodissociation/photoionization processes of chlorobromomethane (CH_2BrCl) induced by fem- tosecond laser pulses have been investigated using pump-probe scheme combined with the time-of-flight mass spectra. The dominate photoproducts are observed at different delay time of the pump (400 nm) and probe (800 nm) pulses and the corresponding time-dependence of them is obtained. The results show that the decaying time of the molecule CH_2BrCl in the A-band is in the 100 fs. The decaying tendencies of the fragment ions (CH_2Cl^+ and CH_2Br^+) and the parent ion (CH_2BrCl^+) are almost the same and the relative ratios of the yields of them keep constant during the delay time of 0 to 150 fs. These facts suggest that the fragment ions come from the fragmentation of the parent ions in excited electronic states. The probabilities to form CH_2Cl^+ and CH_2Br^+ are obtained from the relative ratio of the ion intensity and are about 71.6% and 14.2%, respectively.