Let M be a connected orientable compact irreducible 3-manifold. Suppose that αM consists of two homeomorphic surfaces F1 and F2, and both F1 and F2 are compressible in M. Suppose furthermore that g(M, F1) = g(M) + g(...Let M be a connected orientable compact irreducible 3-manifold. Suppose that αM consists of two homeomorphic surfaces F1 and F2, and both F1 and F2 are compressible in M. Suppose furthermore that g(M, F1) = g(M) + g(F1), where g(M, F1)is the Heegaard genus of M relative to F1. Let Mfbe the closed orientable 3-manifold obtained by identifying F1 and F2 using a homeomorphism f : F1 → F2. The authors show that if f is sufficiently complicated, then g(Mf) = g(M, αM) + 1.展开更多
基金supported by the National Natural Science Foundation of China(No.11271058)The second author is supported by the National Natural Science Foundation of China(No.11171108)
文摘Let M be a connected orientable compact irreducible 3-manifold. Suppose that αM consists of two homeomorphic surfaces F1 and F2, and both F1 and F2 are compressible in M. Suppose furthermore that g(M, F1) = g(M) + g(F1), where g(M, F1)is the Heegaard genus of M relative to F1. Let Mfbe the closed orientable 3-manifold obtained by identifying F1 and F2 using a homeomorphism f : F1 → F2. The authors show that if f is sufficiently complicated, then g(Mf) = g(M, αM) + 1.