The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor...The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.展开更多
Petroleum geochemistry contributes to exploration successes by providing key constraints for geological models and critical input to exploration scenarios. One of the most important tasks in a typical exploration pr...Petroleum geochemistry contributes to exploration successes by providing key constraints for geological models and critical input to exploration scenarios. One of the most important tasks in a typical exploration program is to identify the most effective source intervals or kitchens in a basin, through oil-source correlation. The results of correlation are valid only if the geochemical parameters used address adequately the genetic characteristics of the source rocks as well as the mass transport and mixing processes of hydrocarbon fluids occurring in the carrier beds and reservoirs. This manuscript discusses four of the major contentious petroleum geochemical issues in China’s sedimentary basins. It is suggested that marine incursions played a significant role in the formation of prolific petroleum source rocks in the gigantic, dominantly freshwater, Songliao Basin. Several models are proposed to account for the occurrence of immature oils in the Cathaysian rift system including the Bohai Bay Basin, thus immature source rocks are considered a mere minor contributor to the known economic immature oil resources. Both geological and geochemical evidence are reviewed to refute a dominantly coaly source for the petroleum discovered in the Turpan Basin. Results of case studies are presented to demonstrate the importance of recognizing petroleum fluid mixing to solve the oil-source correlation issues in the structurally complex Tarim Basin. In addressing the fundamental assumptions and potential flaws of the molecular geochemical parameters commonly used for oil-source correlation, the need of a mass fraction approach is proposed to deal with such contentious issues as marine versus lacustrine, coal versus lacustrine, and mature versus immature oils.展开更多
文摘The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.
文摘Petroleum geochemistry contributes to exploration successes by providing key constraints for geological models and critical input to exploration scenarios. One of the most important tasks in a typical exploration program is to identify the most effective source intervals or kitchens in a basin, through oil-source correlation. The results of correlation are valid only if the geochemical parameters used address adequately the genetic characteristics of the source rocks as well as the mass transport and mixing processes of hydrocarbon fluids occurring in the carrier beds and reservoirs. This manuscript discusses four of the major contentious petroleum geochemical issues in China’s sedimentary basins. It is suggested that marine incursions played a significant role in the formation of prolific petroleum source rocks in the gigantic, dominantly freshwater, Songliao Basin. Several models are proposed to account for the occurrence of immature oils in the Cathaysian rift system including the Bohai Bay Basin, thus immature source rocks are considered a mere minor contributor to the known economic immature oil resources. Both geological and geochemical evidence are reviewed to refute a dominantly coaly source for the petroleum discovered in the Turpan Basin. Results of case studies are presented to demonstrate the importance of recognizing petroleum fluid mixing to solve the oil-source correlation issues in the structurally complex Tarim Basin. In addressing the fundamental assumptions and potential flaws of the molecular geochemical parameters commonly used for oil-source correlation, the need of a mass fraction approach is proposed to deal with such contentious issues as marine versus lacustrine, coal versus lacustrine, and mature versus immature oils.