Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model.In this model,solar penetration generates basinwide cooling and wa...Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model.In this model,solar penetration generates basinwide cooling and warming in summer and winter,respectively.Associated with SST changes,annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic,which leads to acceleration of both subtropical and subpolar gyres.Owing to warming in the subtropics and significant saltiness in the subpolar region,potential density decreases(increases) in the subtropical(subpolar)North Atlantic.The north-south meridional density gradient is thereby enlarged,accelerating the Atlantic meridional overturning circulation(AMOC).In addition,solar penetration reduces stratification in the upper ocean and favors stronger vertical convection,which also contributes to acceleration of the AMOC.展开更多
El Nifio and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. An asymptotic method of solving equations for the ENSO model is proposed. Based on a class...El Nifio and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. An asymptotic method of solving equations for the ENSO model is proposed. Based on a class of oscillator of ENSO model and by employing a simple and valid method of the variational iteration, the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is studied. Firstly, by introducing a set of functionals and computing the variationals, the Lagrange multipliers are obtained. And then, the generalized variational iteration expressions are constructed. Finally, by selecting appropriate initial iteration, and from the iterations expressions, the approximations of solution for the sea-air oscillator ENSO model are solved successively. The approximate dissipative travelling wave solution of equations for corresponding ENSO model is studied. It is proved from the results that the method of the variational iteration can be used for analyzing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for ENSO model.展开更多
A method to compute aerothermal-aeroelastic two-way coupling for hypersonic curved panel flutter is proposed. The aero-therrno-elastic governing equations of a simply-supported two dimensional curved panel are develop...A method to compute aerothermal-aeroelastic two-way coupling for hypersonic curved panel flutter is proposed. The aero-therrno-elastic governing equations of a simply-supported two dimensional curved panel are developed based on the von K'arrn'an geometrically non-linear theory. The Galerkin approach is used to simplify the equations into discrete forms, which are solved by the fourth-order Ronger-Kutta method. The third-order piston theory is applied to the aerodynamics. The Eck- ert's reference temperature method and the panel heat flux formula are used to compute the aerodynamic heat flux. Several important effects are included, namely 1) two-way coupling considering the effect of elastic deformation on aerodynamic heating and aerodynamic heating on stiffness of structure, 2) accumulation of the aerodynamic heating in real cruise, 3) arbitrary, non-uniform, in-plane and through-thickness temperature distributions, and 4) the effect of initial deformation of curved panel on the flight time to the onset of flutter. Compared with the results of aerothermal-aeroelastic one-way coupling, it is revealed that the two-way coupling which induces decrease of the flight time to the onset of flutter is more dangerous. In addition, importance should be attached to this method in actual analysis.展开更多
The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow met...The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow methods did not take into account the influence of the interaction caused by air cooling. The aerodynamic design and cooling design of cooled turbines were carried out separately, and the iterations between the aerodynamic design and cooling design led to a long design period and raised the design cost. To shorten the design period and decrease the design cost, this paper proposes a concise aero-thermal coupled through-flow method for the design of cooled turbines, taking into account the influence of the complicated interaction between the flow field and heat transfer in cooled turbines. The governing equations, such as energy equation and continuity equation in classical through-flow method are re-derived theoretically by considering the historical influence of cooling with the same method that deals with viscous losses in this paper. A cooling model is developed in this method. The cooled blade is split into a number of heat transfer elements, and the heat transfer is studied element by element along both the span and the chord in detail. This paper applies the method in the design of a two-stage axial turbine, of which the first stator is cooled with convective cooling. With the prescribed blade temperature limitation and the knowledge of the flow variables of the mainstream at the turbine inlet, such as the total pressure, total temperature and mass flow rate, the convergence of the calculation is then obtained and the properties of the flow field, velocity triangles and coolant requirement are well predicted. The calculated results prove that the aero-thermal coupled through-flow method is a reliable tool for flow analysis and coolant requirement prediction in the design of cooled turbines.展开更多
The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; howev...The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; however, its uncertainty will cause large systematic biases of RCM. Based on the four different PBL schemes (YSU, ACM2, Boulac, and MYJ) in Weather Research and Forecasting (WRF) model, the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon (EASM) are investigated. The simulated results of the two local turbulent kinetic energy (TKE) schemes, Boulac and MYJ, are more consistent with the observations than those in the two nonlocal closure schemes, YSU and ACM2. The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high (WPSH) than the latter. As to the modeling of summer monsoon precipitation, both the spatial distributions and temporal evolutions from Boulac and MTT are also better than those in YSU and ACM2 schemes. In addition, through the comparison between YSU and Boulac experiments, the differences from the results of EASM simulation are more obvious over the oceanic area. In the experiments with the nonlocal schemes YSU and ACM2, the boundary layer mixing processes are much stronger, which lead to produce more sea surface latent heat flux and enhanced convection, and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation. With the further study, it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean. Consequently, there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation, if an ocean model coupled into WRF.展开更多
Since the late 1990s, a climate shift has occurred over the tropical Pacific that is characterized with a La Nifia-like mean state. Coincident with this climate shift, climate models' skills in predicting the El Nifi...Since the late 1990s, a climate shift has occurred over the tropical Pacific that is characterized with a La Nifia-like mean state. Coincident with this climate shift, climate models' skills in predicting the El Nifio Southern Oscillation (ENSO) events in the 2000s are sig- nificantly lower than in the 1980s-1990s, A common bias is likely to exist in contemporary ENSO models that got amplified after the climate shift. In this study, we identify this model bias to be the wind-sea surface temperature coupling processes over the tropical Pacific. Evidence is presented to show that this coupling process experienced an obvious shift around year 2000 in its coupling strength and coupling center. A simple ENSO coupled model is used to demonstrate that the changing properties of the post-2000 ENSO events can be more realistically simulated if this model bias is alleviated.展开更多
基金Supported by the Key Project of National Natural Science Foundation of China(No.41130859)the Innovation Team Project(No.40921004)
文摘Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model.In this model,solar penetration generates basinwide cooling and warming in summer and winter,respectively.Associated with SST changes,annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic,which leads to acceleration of both subtropical and subpolar gyres.Owing to warming in the subtropics and significant saltiness in the subpolar region,potential density decreases(increases) in the subtropical(subpolar)North Atlantic.The north-south meridional density gradient is thereby enlarged,accelerating the Atlantic meridional overturning circulation(AMOC).In addition,solar penetration reduces stratification in the upper ocean and favors stronger vertical convection,which also contributes to acceleration of the AMOC.
基金Under the auspices of National Natural Science Foundation of China (No. 40876010)Main Direction Program of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+3 种基金R & D Special Fund for Public Welfare Industry (meteorology) (No.GYHY200806010)LASG State Key Laboratory Special FundFoundation of E-Institutes of Shanghai Municipal Education Commission (No. E03004)Natural Science Foundation of Zhejiang Province (No. Y6090164)
文摘El Nifio and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. An asymptotic method of solving equations for the ENSO model is proposed. Based on a class of oscillator of ENSO model and by employing a simple and valid method of the variational iteration, the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is studied. Firstly, by introducing a set of functionals and computing the variationals, the Lagrange multipliers are obtained. And then, the generalized variational iteration expressions are constructed. Finally, by selecting appropriate initial iteration, and from the iterations expressions, the approximations of solution for the sea-air oscillator ENSO model are solved successively. The approximate dissipative travelling wave solution of equations for corresponding ENSO model is studied. It is proved from the results that the method of the variational iteration can be used for analyzing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for ENSO model.
文摘A method to compute aerothermal-aeroelastic two-way coupling for hypersonic curved panel flutter is proposed. The aero-therrno-elastic governing equations of a simply-supported two dimensional curved panel are developed based on the von K'arrn'an geometrically non-linear theory. The Galerkin approach is used to simplify the equations into discrete forms, which are solved by the fourth-order Ronger-Kutta method. The third-order piston theory is applied to the aerodynamics. The Eck- ert's reference temperature method and the panel heat flux formula are used to compute the aerodynamic heat flux. Several important effects are included, namely 1) two-way coupling considering the effect of elastic deformation on aerodynamic heating and aerodynamic heating on stiffness of structure, 2) accumulation of the aerodynamic heating in real cruise, 3) arbitrary, non-uniform, in-plane and through-thickness temperature distributions, and 4) the effect of initial deformation of curved panel on the flight time to the onset of flutter. Compared with the results of aerothermal-aeroelastic one-way coupling, it is revealed that the two-way coupling which induces decrease of the flight time to the onset of flutter is more dangerous. In addition, importance should be attached to this method in actual analysis.
基金supported by the National Natural Science Foundation of China(Grant No.51276093)
文摘The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow methods did not take into account the influence of the interaction caused by air cooling. The aerodynamic design and cooling design of cooled turbines were carried out separately, and the iterations between the aerodynamic design and cooling design led to a long design period and raised the design cost. To shorten the design period and decrease the design cost, this paper proposes a concise aero-thermal coupled through-flow method for the design of cooled turbines, taking into account the influence of the complicated interaction between the flow field and heat transfer in cooled turbines. The governing equations, such as energy equation and continuity equation in classical through-flow method are re-derived theoretically by considering the historical influence of cooling with the same method that deals with viscous losses in this paper. A cooling model is developed in this method. The cooled blade is split into a number of heat transfer elements, and the heat transfer is studied element by element along both the span and the chord in detail. This paper applies the method in the design of a two-stage axial turbine, of which the first stator is cooled with convective cooling. With the prescribed blade temperature limitation and the knowledge of the flow variables of the mainstream at the turbine inlet, such as the total pressure, total temperature and mass flow rate, the convergence of the calculation is then obtained and the properties of the flow field, velocity triangles and coolant requirement are well predicted. The calculated results prove that the aero-thermal coupled through-flow method is a reliable tool for flow analysis and coolant requirement prediction in the design of cooled turbines.
基金jointly sponsored by the "Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issue" of the Chinese Academy of Sciences (Grant No. XDA-05110303)the Opening Fund of Key Laboratory for Land Surface Process and Climate Change in Cold and Arid Regions, CAS, the National Basic Research Program of China (Grant No.2010CB951703)the Social Common Weal Profession Research Program of Chinese Ministry of Finance/Ministry of Science and Technology (Grant No. GYHY201006014)
文摘The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; however, its uncertainty will cause large systematic biases of RCM. Based on the four different PBL schemes (YSU, ACM2, Boulac, and MYJ) in Weather Research and Forecasting (WRF) model, the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon (EASM) are investigated. The simulated results of the two local turbulent kinetic energy (TKE) schemes, Boulac and MYJ, are more consistent with the observations than those in the two nonlocal closure schemes, YSU and ACM2. The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high (WPSH) than the latter. As to the modeling of summer monsoon precipitation, both the spatial distributions and temporal evolutions from Boulac and MTT are also better than those in YSU and ACM2 schemes. In addition, through the comparison between YSU and Boulac experiments, the differences from the results of EASM simulation are more obvious over the oceanic area. In the experiments with the nonlocal schemes YSU and ACM2, the boundary layer mixing processes are much stronger, which lead to produce more sea surface latent heat flux and enhanced convection, and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation. With the further study, it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean. Consequently, there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation, if an ocean model coupled into WRF.
基金supported by the National Program for Support of Top-notch Young Professionalsthe National Basic Research Program of China(2012CB955202)+1 种基金the Chinese Academy Sciences’Project‘‘Western Pacific Ocean System:Structure,Dynamics and Consequences’’(XDA10010405)the National Natural Science Foundation of China(41576019)
文摘Since the late 1990s, a climate shift has occurred over the tropical Pacific that is characterized with a La Nifia-like mean state. Coincident with this climate shift, climate models' skills in predicting the El Nifio Southern Oscillation (ENSO) events in the 2000s are sig- nificantly lower than in the 1980s-1990s, A common bias is likely to exist in contemporary ENSO models that got amplified after the climate shift. In this study, we identify this model bias to be the wind-sea surface temperature coupling processes over the tropical Pacific. Evidence is presented to show that this coupling process experienced an obvious shift around year 2000 in its coupling strength and coupling center. A simple ENSO coupled model is used to demonstrate that the changing properties of the post-2000 ENSO events can be more realistically simulated if this model bias is alleviated.