Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton numbe...Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton number Mo = 3.21 × 10^(-9)and Reynolds numbers Re = 180 ~ 190. The effect of bubble injecting frequency and the distance S between the gas injection nozzle and the wall on the statistical trajectory of bubbles, average velocity distribution of flow field and Reynolds shear stress were studied in detail. It was shown that the combination of bubble injecting frequency and the distance S caused different bubble motion forms and hydrodynamic characteristics.When the normalized initial distance was very little, like S*≈ 1.2(here S*= 2S/d_e, and deis the bubble equivalent diameter), bubbles ascended in a zigzag trajectory with alternant structure of high and low speed flow field around the bubbles, and the distribution of positive and negative Reynolds shear stress looked like a blob. With the increase of distance S*, bubbles' trajectory would tend to be smooth and straight from the zigzag curve. Meanwhile, with the increase of bubble injecting frequency, the camber of bubble trajectory at 20<y<60 mm had a slight increase due to the inhibitory effect from the vertical wall. Under larger spacing, such as S*≈ 3.6, the low-frequency bubbles gradually moved away from the vertical plane wall in a straight trajectory and the high-frequency bubbles gradually moved close to the vertical wall in a similar straight trajectory after an unstable camber motion. Under the circumstances, high-speed fluid was mainly distributed in the region between the wall and the bubbles, while the relative large Reynolds shear stress mainly existed in the region far away from the wall.展开更多
Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand ...Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand particles represent around 95% of the total bed weight. Pressure measurements have been used to characterize the dynamic behavior of fluidized beds since early researches in the area. Pressure fluctuations are generally due to bubbles flow which characterizes the fluidization regime. The present work aims to perform a time-frequency analysis of the pressure signal acquired in an experimental apparatus on different gas-solid flow regimes. Continuous and discrete wavelet transforms were applied and the results were compared with image records acquired simultaneously with the pressure signal. The main frequencies observed are in accordance with the ones obtained through Fourier spectra. The time-frequency distribution of the signal agrees with the phenomena observed in the image record, remarkably for the slugging flow. Some additional research is still necessary to completely characterize the flow regimes using the wavelet scalograms but the present results show that the task is a very promising one.展开更多
Turbulence enhancement by particle wake effect is studied by numerical simulation of gas turbulent flows passing over particle under various particle sizes, inlet gas velocities, gas viscosity, gas density and the dis...Turbulence enhancement by particle wake effect is studied by numerical simulation of gas turbulent flows passing over particle under various particle sizes, inlet gas velocities, gas viscosity, gas density and the distance of particles. By performing dimension analysis and using the form of gas-particle interaction source term for reference, a new semi-empirical turbulence enhancement model by the particle-wake effect is proposed. The turbulence model is then incorporated into second-order moment model for simulating gas-particle flows in a horizontal channel with different wall roughness and a sudden-expansion chamber. The results show that this model is with higher calculating accuracy than another two turbulence models in comparison with the experimental results.展开更多
基金Supported by the National Natural Science Foundation of China(11572357,11602077)
文摘Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton number Mo = 3.21 × 10^(-9)and Reynolds numbers Re = 180 ~ 190. The effect of bubble injecting frequency and the distance S between the gas injection nozzle and the wall on the statistical trajectory of bubbles, average velocity distribution of flow field and Reynolds shear stress were studied in detail. It was shown that the combination of bubble injecting frequency and the distance S caused different bubble motion forms and hydrodynamic characteristics.When the normalized initial distance was very little, like S*≈ 1.2(here S*= 2S/d_e, and deis the bubble equivalent diameter), bubbles ascended in a zigzag trajectory with alternant structure of high and low speed flow field around the bubbles, and the distribution of positive and negative Reynolds shear stress looked like a blob. With the increase of distance S*, bubbles' trajectory would tend to be smooth and straight from the zigzag curve. Meanwhile, with the increase of bubble injecting frequency, the camber of bubble trajectory at 20<y<60 mm had a slight increase due to the inhibitory effect from the vertical wall. Under larger spacing, such as S*≈ 3.6, the low-frequency bubbles gradually moved away from the vertical plane wall in a straight trajectory and the high-frequency bubbles gradually moved close to the vertical wall in a similar straight trajectory after an unstable camber motion. Under the circumstances, high-speed fluid was mainly distributed in the region between the wall and the bubbles, while the relative large Reynolds shear stress mainly existed in the region far away from the wall.
文摘Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand particles represent around 95% of the total bed weight. Pressure measurements have been used to characterize the dynamic behavior of fluidized beds since early researches in the area. Pressure fluctuations are generally due to bubbles flow which characterizes the fluidization regime. The present work aims to perform a time-frequency analysis of the pressure signal acquired in an experimental apparatus on different gas-solid flow regimes. Continuous and discrete wavelet transforms were applied and the results were compared with image records acquired simultaneously with the pressure signal. The main frequencies observed are in accordance with the ones obtained through Fourier spectra. The time-frequency distribution of the signal agrees with the phenomena observed in the image record, remarkably for the slugging flow. Some additional research is still necessary to completely characterize the flow regimes using the wavelet scalograms but the present results show that the task is a very promising one.
基金the National Natural Science Foundation of China(No.50736006)the Aero-Science Fund(No.2009ZB56004)the Jiangxi Provincial Natural Science Foundation(Nos.2009GZC0100 and 2008GZW0016)
文摘Turbulence enhancement by particle wake effect is studied by numerical simulation of gas turbulent flows passing over particle under various particle sizes, inlet gas velocities, gas viscosity, gas density and the distance of particles. By performing dimension analysis and using the form of gas-particle interaction source term for reference, a new semi-empirical turbulence enhancement model by the particle-wake effect is proposed. The turbulence model is then incorporated into second-order moment model for simulating gas-particle flows in a horizontal channel with different wall roughness and a sudden-expansion chamber. The results show that this model is with higher calculating accuracy than another two turbulence models in comparison with the experimental results.