期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
气井水合物生成及防治综述
1
作者 杨永韬 周长林 +5 位作者 王际晓 何威利 黄军 谭战胜 刘晓东 程纯勇 《山东化工》 CAS 2024年第15期156-161,共6页
天然气开采过程中气井水合物的生成将带来起下管柱中遇阻遇卡、密封件失效、堵塞器下放不到位、影响采气等诸多难以处理的工程问题。本文通过全面分析水合物的生成机理、生成条件和生成位置,归纳总结了水合物生成预测方法,以及常用的水... 天然气开采过程中气井水合物的生成将带来起下管柱中遇阻遇卡、密封件失效、堵塞器下放不到位、影响采气等诸多难以处理的工程问题。本文通过全面分析水合物的生成机理、生成条件和生成位置,归纳总结了水合物生成预测方法,以及常用的水合物化学抑制剂和物理加热的防治措施,并分析了各自的作用机理和适用范围。就当前研究现状提出几点综合性建议,旨在提高气井水合物防治技术,保障天然气资源高效开采。 展开更多
关键词 气井水合物 生成机理 生成条件 防治措施
下载PDF
高含硫化氢气井水合物的预测及防治 被引量:12
2
作者 姚慧智 魏鲲鹏 +1 位作者 古小红 刘建仪 《断块油气田》 CAS 北大核心 2011年第1期107-109,共3页
普光气田属于过成熟高含硫干气气藏。在高含硫化氢气井的生产过程中,极易形成天然气水合物,影响气井的正常生产,因此,如何科学有效地防治水合物的生成,成为高含硫气井的一项重要技术难题。该文通过室内实验和软件模拟的方法对水合物生... 普光气田属于过成熟高含硫干气气藏。在高含硫化氢气井的生产过程中,极易形成天然气水合物,影响气井的正常生产,因此,如何科学有效地防治水合物的生成,成为高含硫气井的一项重要技术难题。该文通过室内实验和软件模拟的方法对水合物生成的条件进行了对比研究。通过水合物动力实验,分析研究了过冷度和抑制剂质量浓度对水合物生成行为的影响,建立了在井筒中高含硫化氢和二氧化碳气体条件下,综合考虑气体组分、水合物抑制剂和电解质等因素的水合物形成热力学预测模型。结合现场实际运行情况,提出了加注水合物抑制剂和控制温度的方法防止高含硫气井在生产过程中水合物的出现,对高含硫气井的正常生产维护具有重要指导意义。 展开更多
关键词 高含硫气井:水合物 防治
下载PDF
气井水合物生成条件预测 被引量:8
3
作者 于洪敏 左景栾 张琪 《天然气地球科学》 EI CAS CSCD 北大核心 2010年第3期522-527,共6页
气井井筒中形成的天然气水合物,会堵塞油管,影响生产。通过对国内外文献的调研,分析了气井水合物的形成条件、影响因素及各种预测方法。在研究气井井筒的温度、压力分布的基础上,结合水合物形成的简化牛顿热力学改进预测方法,建立了水... 气井井筒中形成的天然气水合物,会堵塞油管,影响生产。通过对国内外文献的调研,分析了气井水合物的形成条件、影响因素及各种预测方法。在研究气井井筒的温度、压力分布的基础上,结合水合物形成的简化牛顿热力学改进预测方法,建立了水合物形成的预测模型,并编制软件进行气井实例计算。计算结果表明,该模型预测水合物形成效果较好。 展开更多
关键词 气井水合物 生成条件 预测方法 数学模型 温度 压力
原文传递
Effect of surfactant Tween on induction time of gas hydrate formation 被引量:16
4
作者 ZHANG Bao-yong WU Qiang SUN Deng-lin 《Journal of China University of Mining and Technology》 EI 2008年第1期18-21,共4页
Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as acceler... Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as accelerants for hydrate formation, on induction time. We experimented with three types of a Tween solution with equal concentrations of 0.001 mol/L (T40, T40/T80 (1:1), T40/T80 (4:1)). By means of visual experimental equipment, developed by us, we measured generalized induction time using a Direct Observation Method. The experimental data were analyzed combined with a mass transfer model and a hydrate crystal nuclei growth model. Our major conclusions are as follows: 1) solubilization of surfactants produces supersaturated gas molecules, which promotes the mass transfer from a bulk phase to hydrates and provides the driving force for the complexation between host molecules (water) and guest molecules in a gas hydrate formation process; 2) when the solution of the surfactant concentration exceeds the critical micelle concentration (CMC), the surfactant in an aqueous solution will transform to micelles. Most of the gas molecules are bound to form clusters with water molecules, which promotes the formation of crystal nuclei of gas hydrates; 3) the surfactant T40 proved to have more notable effects on the promotion of crystal nuclei formation and on shortening the induction time, compared with T40/T80 (1:1) and T40/T80 (4:1). 展开更多
关键词 gas hydrate SURFACTANT induction time coal and gas outburst
下载PDF
Factors influencing the porosity of gas hydrate bearing sediments 被引量:4
5
作者 HE Jing LIU XueWei +2 位作者 YU Zhen XIE ChengLiang LI ZiWei 《Science China Earth Sciences》 SCIE EI CAS 2013年第4期557-567,共11页
Porosity is a key parameter in calculating the velocity of gas hydrate bearing sediments and quantifying the amount of gas hydrate. The variation of porosity is affected by many factors. The influences of different fa... Porosity is a key parameter in calculating the velocity of gas hydrate bearing sediments and quantifying the amount of gas hydrate. The variation of porosity is affected by many factors. The influences of different factors on porosity are distinct. The purpose of this paper is to analyze the main factors that affect the overall and local change of porosity in marine sediments where gas hydrate was sampled. Porosity logs were collected from ODP Leg 164, Blake Ridge, ODP Leg 204, Hydrate Ridge, and IODP expedition 311, Cascadia Margin. Based on the characteristic of porosity variation in depth, porosity was divided into three components: low frequency component, middle frequency component, and high frequency component. The factors influencing each component were discussed. From the analysis, we observed that the porosity of unconsolidated sediment was very high, and the decreasing trend of low frequency component versus depth was affected by compaction. In addition, the initial porosity and slope of low frequency component variation were affected by the content of fine grain and geothermal gradient respectively. The middle component could reflect the variation of lithology, which was affected by the content variation of different sized grains and gas hydrate. The high frequency component was affected by the frequent change of grain size. The existence of volcanic ash-rich sand caused a high value to the high frequency component. The results are applicable to porosity evaluation in gas hydrate bearing sediments. 展开更多
关键词 POROSITY gas hydrate three components of porosity unconsolidated sediment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部