This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of str...This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration, showing the tendency for particles to aggregate to form clusters and for fluid to pass around clusters. The global drag coefficient is resolved into that for the dense phase, for the dilute phase and for the so-called inter-phase, all of which can be obtained from their respective phase-specific structure parameters. The computational results show that the drag coefficients of the different phases are quite different, and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu. The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure, and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.展开更多
Turbulence enhancement by particle wake effect is studied by numerical simulation of gas turbulent flows passing over particle under various particle sizes, inlet gas velocities, gas viscosity, gas density and the dis...Turbulence enhancement by particle wake effect is studied by numerical simulation of gas turbulent flows passing over particle under various particle sizes, inlet gas velocities, gas viscosity, gas density and the distance of particles. By performing dimension analysis and using the form of gas-particle interaction source term for reference, a new semi-empirical turbulence enhancement model by the particle-wake effect is proposed. The turbulence model is then incorporated into second-order moment model for simulating gas-particle flows in a horizontal channel with different wall roughness and a sudden-expansion chamber. The results show that this model is with higher calculating accuracy than another two turbulence models in comparison with the experimental results.展开更多
Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was car...Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was carried out in the cold-test rig of an annular furnace CFB with six cyclones. The influence of furnace structure and cyclone arrangement on the non-uniformity of gas-solid flow was obtained. On the basis of these findings, the structure of the annular furnace CFB with six cyclones was optimized, and an optimal structure was obtained. The results show that for newly designed annular furnace CFBs, the non-uniformity of gas-solid flow among loops is no greater than that of traditional CFBs. In terms of uniformity, side cyclones rotating inward are superior to those rotating outward. The position of the side cyclones determines the basic solid circulating rate distribution trend and can dramatically improve flow non-uniformity. The middle cyclone positions and the symmetric modes of the cyclones do not determine the solid circulating rate distribution trend and have less effect on DEVGs. Forty-five degree chamfers of outer ring walls can reduce wall erosion and the non-uniformity of gas-solid flow in the circulating fluidized bed. Regarding the operating and structural conditions in this work, the optimal structure of annular furnace CFBs is Type 6: side cyclones rotating inward and b = a/2, d = 0.1c; the center of the middle cyclone inlet located at the centerline of the furnace cross-section; cyclones on the two sides of the furnace in an axisymmetric arrangement; and a furnace corner shape of 45° chamfers. Under the given operating conditions, the DEV_(Gs) for the optimal structure are approximately 4.0%~10.3%.展开更多
基金Supported by the National Key Program for Developing Basic Sciences of China (No. G1999022103) and the National Natural Science Foundation of China (No. 20176059).
文摘This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration, showing the tendency for particles to aggregate to form clusters and for fluid to pass around clusters. The global drag coefficient is resolved into that for the dense phase, for the dilute phase and for the so-called inter-phase, all of which can be obtained from their respective phase-specific structure parameters. The computational results show that the drag coefficients of the different phases are quite different, and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu. The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure, and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.
基金the National Natural Science Foundation of China(No.50736006)the Aero-Science Fund(No.2009ZB56004)the Jiangxi Provincial Natural Science Foundation(Nos.2009GZC0100 and 2008GZW0016)
文摘Turbulence enhancement by particle wake effect is studied by numerical simulation of gas turbulent flows passing over particle under various particle sizes, inlet gas velocities, gas viscosity, gas density and the distance of particles. By performing dimension analysis and using the form of gas-particle interaction source term for reference, a new semi-empirical turbulence enhancement model by the particle-wake effect is proposed. The turbulence model is then incorporated into second-order moment model for simulating gas-particle flows in a horizontal channel with different wall roughness and a sudden-expansion chamber. The results show that this model is with higher calculating accuracy than another two turbulence models in comparison with the experimental results.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA07030100
文摘Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was carried out in the cold-test rig of an annular furnace CFB with six cyclones. The influence of furnace structure and cyclone arrangement on the non-uniformity of gas-solid flow was obtained. On the basis of these findings, the structure of the annular furnace CFB with six cyclones was optimized, and an optimal structure was obtained. The results show that for newly designed annular furnace CFBs, the non-uniformity of gas-solid flow among loops is no greater than that of traditional CFBs. In terms of uniformity, side cyclones rotating inward are superior to those rotating outward. The position of the side cyclones determines the basic solid circulating rate distribution trend and can dramatically improve flow non-uniformity. The middle cyclone positions and the symmetric modes of the cyclones do not determine the solid circulating rate distribution trend and have less effect on DEVGs. Forty-five degree chamfers of outer ring walls can reduce wall erosion and the non-uniformity of gas-solid flow in the circulating fluidized bed. Regarding the operating and structural conditions in this work, the optimal structure of annular furnace CFBs is Type 6: side cyclones rotating inward and b = a/2, d = 0.1c; the center of the middle cyclone inlet located at the centerline of the furnace cross-section; cyclones on the two sides of the furnace in an axisymmetric arrangement; and a furnace corner shape of 45° chamfers. Under the given operating conditions, the DEV_(Gs) for the optimal structure are approximately 4.0%~10.3%.